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Abstract—Photoplethysmogram signals are becoming increas-
ingly important for the detection of abnormalities in patients.
Peak detection plays a significant role in diagnosis and monitoring
using PPG signals. Although a copious number of methods are
available for peak detection, none of them consider an online
processing of the signal. In this paper we propose an online
peak detection algorithm that tries to mimic the human cognitive
model using a three-layered feedforward neural network trained
using online sequential learning algorithm. The signals are pro-
cessed sequentially without pre-processing or feature extraction,
and result in an almost instantaneous detection of peaks.

I. INTRODUCTION

Photoplethysmogram (PPG) is an optically obtained signal

that provides information about the changes in the blood

volume in the micro-vascular tissue bed. These signals are

recorded by placing electrodes on the skin surface of periph-

eral body sites such as finger and ear-lobe. The PPG signal

is useful for monitoring heart rate, cardiac cycles, respiration,

depth of anaesthesia, and hypo- and hyper-volemia. Parameters

like pulse transmit time and pulse wave velocity obtained from

the systolic peaks of the PPG signal are used in determining

important parameters pertaining to the health of a patient; these

include blood pressure [1], stiffness of the arteries [2], left

ventricular ejection time, left ventricular pre-ejection period

[3], and blood in surgical operation [4]. The objective of this

paper is to propose a novel technique to detect and locate the

peaks in a PPG signal.

Whilst a number of researchers have dealt with Electrocar-

diogram (ECG) signal analysis and QRS complex detection,

there appears to be very little work on the peak detection

of PPG signals. QRS complex detection is based on the

impulsive nature of the signal. In contrast, PPG signals — as

can be observed from Fig. 1 — has characteristics that bear

resemblance to a sinusoidal signal. In this paper, we exploit

this to arrive at a peak detection technique.

There are a variety of methods to detect peaks. These

include the conventional window threshold technique [5], [6];

the use of transforms such as wavelet or Hilbert transforms

[7], [8]; Kalman or nonlinear filtering [9], [10]; and, hidden

Markov models [11]. In [12], the author iteratively determines

the autocorrelation sequence to detect regions of interest and

thresholds to detect peaks. By adapting the segment lengths

and comparing maximum points of consecutive segments
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Fig. 1. A sample photoplethysmogram signal.

peaks of PPG signals are detected in [13]. Artificial neural

networks were used in [14] and [15], and clustering techniques

in [16]. The authors in [17] present an automatic multiscale-

based peak detection algorithm.

Thus, despite a profusion of algorithms, they typically

involve pre-processing and feature extraction, and hence com-

putationally rather intensive. Moreover, a fundamental require-

ment for these algorithms is the availability of the entire signal.

Accordingly, these methods consider offline training with the

available data. As seen later in the sequel, the proposed

algorithm avoids these requirements, is online in nature, and

is quite intuitive. From a practical viewpoint, online learning

is better suited for real-time applications. Our focus is on

developing tools and hand-held devices that provide assess-

ment of the health of a patient with minimal energy usage.

Requirements for this include online processing of signals and

algorithms that are computationally less expensive.

In this paper, we present a methodology for detecting

the peaks in a signal by first classifying segments of the

signal into a set of fundamental a priori defined classes. Only
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those segments that contain a peak are further processed to

detect and determine the precise location of the peaks. The

classification is carried out using a feedforward neural network

(FFNN) that is trained using an online sequential learning

algorithm (OSLA). The classification process avoids complex

pre-processing and feature extraction.

The paper is organised as follows: In Section II we discuss

the methodology. The algorithm used to train the FFNN is

presented in Section III. Results on two classes of signals are

provided in Section IV.

II. PEAK DETECTION METHODOLOGY

The proposed technique for detecting peaks is essentially

based on recognising the shape of the graph of a function or

signal. (In what follows, this is referred to as the ‘shape of

a signal.’) In this section, we first describe the method with

the family of signals represented by a finite sum of sinusoids.

Subsequently, we extend the idea to PPG signals, and finally

present a simplified approach for these signals.

Essentially, we exploit the human cognitive process which

does not require the entire signal to be available a priori to

detect and locate a peak. In contrast to conventional methods,

it is able to detect a peak as and when portions of the signal

are shown. In our context, we employ online classification

of segments of a signal and detect the peaks nearly instanta-

neously. Such an approach appears to be novel to the authors’

best knowledge.

A. Peak Detection in Sinusoidal Signals Using Fundamental
Classes Drawn from Sinusoids (PDSS)

Commonly occurring signals in nature are periodic. It is

well-known that these can either be represented by a finite

sum of sinusoids with different frequencies and phases, or

approximated by such a finite sum. A sinusoidal signal has

essentially four shapes as shown in Fig. 2; we refer to them as

the fundamental classes. Class 1 represents the graph wherein

the gradient of the graph is nonnegative and Class 2 represents

the graph wherein the gradient is initially nonnegative and

subsequently nonpositive. Signals belonging to Classes 3 and

4 respectively are merely the reflections about the x-axis of

signals belonging to Classes 1 and 2, respectively.

Obviously, only Class 2 contains a peak, and requires further

processing to locate the peak. The classes 1 through 4 are

respectively denoted C1, C2, C3 and C4. Thus, the principal

idea is to first classify segments of a given signal as belonging

to one of the four classes, C1, C2, C3 or C4. Subsequently,

only those segments belonging to C2 are further processed

to detect the location of the peak. Evidently, the efficiency of

peak detection algorithm is strongly related to the classification

accuracy.

Consider the following family of signals

S =

{
s(t) : s(t) =

m∑
i=0

sinωit, ωi ∈ IR+, m ∈ IN

}
(1)
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Fig. 2. Fundamental classes of a sinusoidal signal.

where IR+ is the set of strictly positive real numbers and IN
is the set of natural numbers. For any s(t) ∈ S, let

sp(t) =

⎧⎨
⎩ s(t), t ∈ [t1, t2]

0, otherwise
(2)

be a segment of s(t). Clearly, for suitably chosen t1 and t2,

the shape of sp(t) belong to one of the Cis. A segmented

portion being classified as belonging to C2 is equivalent to

detecting a peak. Thus, peak detection and location in a signal

belonging to S is achieved by first classifying non-overlapping

segments into the four fundamental classes that are derived

from a sinusoid; we refer to this as PDSS.

The method to automatically choose t1 and t2 in (2) is

not clear a priori. In this paper, we experimentally choose as

follows the segment length L = t2 − t1 which gives the best

classification accuracy: A heuristic is provided by the Nyquist

criteria. The chosen database consists of signals sampled with

a frequency of 450 Hz; accordingly, an approximate value

of L is one-fourth of this sampling frequency, namely, 112.

Further experimentation reveals that a window length of 101

provides acceptable results. Evidently, such experimentation

is restricted to the data required to train the artificial neural

network.

A feedforward neural network is trained to recognise the

four fundamental classes. For faster training and classification

we use a network with a single hidden layer and a sequential

learning algorithm presented in Section III. The raw signals are

shown to the network; i.e., we avoid complex pre-processing

and feature extraction. Once the network is trained, an entire

signal s(t) ∈ S is presented to the network with the samples

shown sequentially. If a segment (or a window) of suitably

chosen length L is classified as C2, it is further considered for

peak detection; the latter is merely obtaining the maximum of
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the samples present in that particular window, and determining

its location. The simulation results are presented in Section IV.

The proposed method for peak detection is clearly on-line and

intuitive, and does not require offline complex pre-processing

and feature extraction.

The manner in which the segments are processed indicates

that more than one segment containing the same peak is

likely to be classified as belonging to C2. This can result

in an increase of the peak count. In order to mitigate such

spurious peak detection, the central position of the segment

is monitored. Only those segments are considered for peak

location and count wherein the maximum value in a particular

segment is located at the central position.

B. Peak Detection in PPG Signals Using Fundamental
Classes Drawn from PPG Signals (PDPP)

As evident from Fig. 1, PPG signals are much more

complicated than sinusoids. Therefore, peak detection in these

signals is not as straightforward as that of sinusoidal signals.

Nonetheless, the idea presented earlier for sinusoidal signals

works as well for PPG signals.

In this paper, we consider the PPG signals available from the

IEEE TBME Respiratory Rate Benchmark data set associated

with [18]. The number of available signals is 42. In our work

we consider the raw signals and we do not consider pre-

processing. The signals are partitioned into segments of length

L. Clearly, the choice of the value of L depends on the signals.

As mentioned earlier, a heuristic is provided by the Nyquist

criteria. Since the sampling frequency is 300 Hz, an initial

guess of the window length is 75. Further experimentation

reveals that L = 81 provides acceptable results. The four
fundamental shapes for PPG signals are shown in Fig. 3. Only

Class 2 is considered to contain a peak. Thus, we use these

four fundamental shapes derived from a PPG signal to classify

segments of PPG signals to determine whether or not there is

a peak; we refer to this as PDPP.

As evident from Fig. 3, effective gradient determination is

not as straightforward as in the case of sinusoids as the graphs

are not sufficiently smooth. To train the neural network we

require class labels for each segment. Towards this, the first

step is to obtain a piecewise linear approximation from the

samples. (This makes the signal smoother to some extent and

is an attempt to avoid spurious peaks.) The effective slope is

derived from the slopes of the individual slopes of the linear

approximations which are either nonpositive or nonnegative.

The effective slopes of the first and second halves of the

segment determine the class label. Similar to PDSS, we train

a three-layered FFNN with OSLA to classify using these class

labels.

C. Peak Detection in PPG Signals Using Fundamental
Classes Drawn from Sinusoidal Signals (PDPS)

From a human visual standpoint, a peak of a signal is

merely the highest point of a segment of the corresponding

graph. Accordingly, at a certain depth of vision, the second

fundamental shape of a PPG signal shown in Fig. 3 bears a
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Fig. 3. Fundamental shapes of a PPG signal.
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Fig. 4. Visualization of depth of a signal while perceiving it with different
window lengths. The depth is largest in (a) and it is myopic in (c). A
satisfactory depth is given in (b).

close resemblance to a signal belonging to C2 shown in Fig. 2.

In this section, we exploit this resemblance to detect the peaks

in a PPG signal. In other words, we use the fundamental

classes C1 through C4 derived from the sinusoid to classify

segments of a PPG signal; we refer to this as PDPS.

The depth of vision can be quantified in terms of the length

of a segment. The effect of this length is illustrated in Fig. 4.

A larger length increases the depth of vision and encompasses

more than one peak; this is shown in Fig. 4(a). This makes the

peak detection process more complex. In contrast, a myopic

vision as depicted in Fig. 4(c) leads to a situation wherein the
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peak is not detected. However, if the length of the window is

chosen appropriately, a single peak can be observed as evident

from Fig. 4(b), and closely resembles C2. Thus, with a proper

segment length, classification of segments of a very different

signal such as PPG can be carried out using the classifier

of PDSS. We recall that the segment length for PDSS was

experimentally found to be 101. For PDPS, this is the apt

window length.

III. ONLINE SEQUENTIAL LEARNING ALGORITHM

In this paper we consider three-layered feedforward neural

networks (FFNN) with m0 input nodes, m1 neurons in the

hidden layer and m2 output neurons. We denote such a

network as Nm0:m1:m2
. Whilst the hidden layer is nonlinear

with the activation function φ(v) = tanh(v), the output layer
is linear with unity gain. The set of synaptic weights that

connect the input nodes to the hidden layer can be arranged

as an array, denoted W1. Similarly, the synaptic weights that

connect the hidden layer to the output layer is a matrix denoted

W2. From the equations that follow it is obvious that W1 and

W2 have dimensionsm1×(m0+1) and m2×(m1+1), where
the bias has also been taken into account.

The ordered pairs of data are denoted (xk,yd,k), where
xk ∈ IRm0 and yd,k ∈ IRm2 , and k indicates the sample

number. Here, xk is the input to the network and yd,k is the

desired output of the network. The computations in the forward

pass may be summarised as follows:

ȳ1,k = φ (W1y0,k) (3)

y2,k = W2y1,k (4)

where

y0,k
Δ
=

⎛
⎝ 1

xk

⎞
⎠ , y1,k

Δ
=

⎛
⎝ 1

ȳk

⎞
⎠ .

In the online sequential learning algorithm (OSLA), the

weight matrix W1 is initialised randomly and the weight

matrix W2 is set to a zero matrix. Subsequently, the weight

matrix W2 is updated as follows: For k ≥ 0,

Pk+1 = Pk −
Pky1,k+1y

T
1,k+1Pk

1 + yT
1,k+1Pky1,k+1

(5)

W2,k+1 = W2,k + ek+1y
T
1,k+1Pk+1 (6)

where the error in the a priori estimate

ek+1
Δ
= yd,k+1 − W2,ky1,k+1

and P0 = 1
λ
Im1+1 with Im an identity matrix of dimensions

m × m and λ > 0. Note that the weight matrix W1 is not

updated.

It is quite straightforward to show that the update equations

(5) and (6) correspond to the recursive least squares solution

to the Tikhonov-Phillips functional

J = ‖W2Y1 − Yd‖ + λ‖W2‖, (7)

where λ is also known as the regularisation parameter ([19]–

[21]), and

Y1 =
(

y1,1 y1,2 · · · y1,N

)
Yd =

(
yd,1 yd,2 · · · yd,N

)
Here, it is assumed that the data consists of N pairs of input

and output. The parameter λ provides a trade-off between

minimisation of the training error and the synaptic weights

of the output layer. Clearly, the minimiser of (7) is global.

Comments: (i) In contrast to the back propagation algorithm,
the OSLA converges to the global minimum. Experience

indicates that the convergence of OSLA is faster. It may

be noted, however, that the back propagation algorithm is

applicable to FFNNs with arbitrary number of hidden layers.

(ii) The weight update equations (5) and (6) are similar to

the weight update equations of the online sequential extreme

learning machine (OSELM) proposed in [22], the sequential

version of the extreme learning machine [23]. However, in

contrast to OSELM, the initialisations are quite different.

The different initialisation of OSLA results in much better

performance compared to other sequential forms of learning

including OSELM in the context of system identification and

control [24], [25] and time-series prediction [26].

IV. RESULTS AND DISCUSSIONS

The first set of experiments consists of detecting and lo-

cating the peaks of signals in S using the four fundamental

classes that are extracted from sinusoids and shown in Fig. 2;

i.e., we now present the results related to PDSS described in

Section II-A. The chosen window length is 101. Therefore,

we consider a FFNN with m0 = 101 input nodes. Further,
the number of neurons in the output layer is m2 = 4
since there are four classes. The number of hidden neurons

m1 is experimentally chosen to be 400 based on achieved

classification accuracy. (We denote this network asN
(1)
101:400:4.)

The training set consists of 918, 1092, 908 and 1072 segments

respectively belonging to the classes C1, C2, C3 and C4. The

percentages of correct classification are respectively 95.5, 98.1,

95.4 and 98.5.

The confusion matrix for the training data is shown in

Fig. 5. It may be recalled that the only class of interest from

the viewpoint of peak detection is C2. Of the 1092 segments

that belong to this class, 1071 segments have been correctly

classified resulting in a percentage accuracy of 98.1; 10 of the

segments have been wrongly classified as class C1; and, 11 of

the segments have been wrongly classified as class C3. There

are a total of 3990 segments. Accordingly, the percentage of

segments correctly classified as C2 is 26.8. Similarly, 10 of

the total number of segments have been wrongly classified as

C1 resulting in an approximate percentage of 0.3; and, so on.

These facts correspond to the second row of the confusion

matrix in Fig. 5. In addition to 1071 segments correctly

classified, 27 segments that belong to C1 have been wrongly

classified as C2, and 20 segments that belong to C3 have been

wrongly classified as C2. Thus, there are 1118 segments that
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Fig. 5. Confusion matrix related to classification of signals in S based on
the four fundamental classes; i.e., PDSS.

have been classified as C2. Of these only 1071 are correctly

classified; this corresponds to 95.8%. This is shown as the 2nd

entry of the last row. Amongst all classes, there are a total of

3870 segments correctly classified; this corresponds to 97% of

the total number of segments 3990, and is the overall accuracy

of the classification process. This is the last entry of the last

row in the confusion matrix.

Those segments that belong to class C2 are then passed on to

the peak detector and processed as explained in Section II-A.

These results of peak detection are shown in Fig. 6(a) and

compared with those obtained by using the findpeaks function
of MATLAB which are shown in Fig. 6(b). Evidently, there is

no difference between the two methods. To quantify this, the

accuracy of detection of peaks in sinusoidal signals with PDSS

is calculated with respect to the output of findpeaks; that is,
the peak detection accuracy (PDA) is the ratio

PDAPDSS =
Number of peaks detected by PDSS

Number of peaks detected by findpeaks
(8)

expressed as a percentage. For PDSS, the PDA is observed

to be 100%. Thus, it can easily be seen that the proposed

technique performs rather well. It may be noted that the

database consists of noise-free signals and hence the peak

detection process using either method is quite straightforward.

Comments: Essentially, the MATLAB function findpeaks
compares neighbouring points and determines all those peaks

that are separated by a minimum distance, and larger than their

neighbours by a threshold. Clearly, this function requires the

a priori availability of the complete signal, and is offline in

nature.

For the experiments related to PDPP and described in

Section II-B, a second feedforward neural network is trained

using the fundamental shapes extracted from the PPG signals
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Fig. 6. Results of peak detection in a sinusoidal signal. (a) Using the built-in
function findpeaks. (b) Using the proposed algorithm PDSS.
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Fig. 7. Confusion matrix related to classification of PPG signals based on
the four fundamental shapes; i.e., PDPP.

and shown in Fig. 3. As explained in Section II-B, the window

length that provides the best classification accuracy is 81.

Moreover, the number of hidden neurons is experimentally

chosen to be 400. Thus, for this network,m0 = 81,m1 = 400,
and m2 = 5. (We denote this network as N

(2)
81:400:5.) Since the

PPG signals are not as smooth as the previous database of sum

of sinusoids, we add a fifth class which consists of segments

that are anomalous in that they do not reasonably resemble

any of the four fundamental classes. This class is essentially

a set of segments that are to be discarded.

The confusion matrix for segments of PPG classified from
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Fig. 8. Results of peak detection in a PPG signal using the proposed algorithm
PDPP. The results are zoomed in (b).
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Fig. 9. Results of peak detection in a PPG signal using the proposed algorithm
PDPS. The results are zoomed in (b).

the four fundamental shapes extracted from PPG signals is

provided in Fig. 7. (The explanation of this confusion matrix is

similar to that for the confusion matrix shown in Fig. 5.) The

overall classification accuracy is 91.5%. However, the only

class of interest is C2 for which the classification accuracy

is 93.3%. The results of peak detection is shown in Fig. 8.

A magnified version is shown in Fig. 8(b). Evidently, the

proposed algorithm performs satisfactorily. However, not all

the peaks are detected. Indeed the value of the metric PDA

as determined from (8) (with PDSS replaced by PDPP) is

91.38%, averaged over all the signals in the database.
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Fig. 10. Results of peak detection in a PPG signal using (a) PDPP, (b) PDPS,
and (c) findpeaks.

Finally, we detect the peaks in the PPG signal using the

fundamental classes derived from the sinusoidal signal; i.e., we

use the method PDPS described in Section II-C. We emphasise

that we use the same trained network N
(1)
101:400:4 that was

used to classify segments of sinusoidal signals into the four

fundamental classes C1 through C4. Accordingly, there is no

additional training and the network is tested on the set of PPG

signals that this network has not been exposed to a priori.

Clearly, the window length that is used now is 101. This

window length helps to visualise the signal from a particular

depth where it is perceived to be closer to a sinusoid. The

results of peak detection is observed to be satisfactory from

Fig. 9.

The three methods — PDPP, PDPS, and findpeaks — to
detect peaks in a PPG signal are compared in Figures 10 and

11. The latter figure indicates that the proposed methods do

not always detect the peaks. Evidently, the proposed methods

PDPP and PDPS provide results that are comparable to the

MATLAB built-in function findpeaks. The value of the metric
PDA as determined from (8) (with PDSS replaced by PDPS)

is 97.93%, averaged over all the signals in the database. (The

total number of signals in the database is 42.) Evidently,

PDPS provides significantly better detection accuracy when

compared to PDPP. We note that classification in PDPS did

not require additional training of the network; the network that

was trained to classify segments of sinusoidal segments was

used directly on the database of PPG signals.

We now present statistical analysis based on the Wilcoxon

signed rank test. We first compare the classification of seg-

ments using the online sequential learning algorithm with

that of a neural network trained with the back propagation

algorithm. For a 5% significance level, the null hypothesis

failed with a p-value of 0.04. Accordingly, the median of the
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Fig. 11. Results of peak detection in a PPG signal using (a) PDPP, and
(b) PDPS.

distributions corresponding to the algorithms are significantly

different. Indeed, it has been the experience that OSLA pro-

vides better classification accuracies. However, the test failed

to reject the null hypothesis when the three methods for peak

detection — PDSS, PDPP and PDPS — are compared with the

results of findpeaks for the 5% significance level. The respec-
tive p-values are 0.8649, 0.8773 and 0.6557. Therefore, there

is no significant difference between the proposed methods for

peak detection and the findpeaks algorithm. However, in the
context of peak detection of PPG signals, it was observed that

PDPS performed better in terms of the metric PDA.

V. CONCLUSIONS

In this paper we presented a methodology for detecting the

peaks of a noisy complex signal such as PPG using principles

derived from the human cognitive process. Essentially, when

viewed from the proper depth, segments of the signal resemble

the fundamental classes of a sinusoidal signal. Moreover, the

human cognitive process is online and sequential. Accordingly,

the methodology consists of classifying segments of a signal,

and subsequently locates and detects the peak of only those

segments that contain a peak. The classification uses a three-

layered network trained with the online sequential learning

algorithm. No complex pre-processing of signals and feature

extraction are required for the classification process during

training as well as testing. The classification is therefore online

and sequential. Thus, peak detection can be carried out on-the-

fly. The results are comparable with an often-used conventional

peak detection algorithm. Work is in progress to statistically

compare this algorithm with multiple datasets and different

algorithms.
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