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Abstract—Human activity recognition (HAR) and
Extreme Learning Machines (ELM) are emerging fields
of research. HAR investigates the behavioural at-
tributes of humans and integrates that to an electronic
system. An ELM is a fast learning algorithm, and
overcomes the fundamental issue of slow training-error
convergence that other algorithms such as the back
propagation algorithm suffer. In this paper, we present
the blend of the two fields by classifying the behavioural
attributes of humans using Artificial Neural Networks
(ANN) trained by Sequential Extreme Learning Algo-
rithm (SELA). The algorithm is efficacious with a re-
markable accuracy despite circumventing the vital job
of pre-processing and feature extraction from signals
that have been acquired from sensors.

Keywords—Human activity recognition, extreme

learning machines, sequential learning

I. Introduction

Human Activity Recognition (HAR) has been of interest
in the recent past and work is being carried that would
automatically recognize these activities. The increase in
the popularity of HAR is perhaps due to the ubiquitous
presence of the so-called ‘smart’ devices which have helped
develop cognitive and interactive environments. For ex-
ample, in [1], several human behavioural attributes are
taken into consideration to understand human behaviour.
Integration of these attributes into devices such as smart
phones helps in interaction with the environment.

At present, activity recognition is carried out with the
information obtained from a camera [2], or by using sensors
mounted on the body [3]. Vision-based techniques are
based on methods such as optical flow models [4], Kalman
filtering and Hidden Markov Models (HMM) [5]. Sensor-
based activity recognition incorporates data mining, sta-
tistical modelling and machine learning techniques. We
present an analysis using the latter approach.

In the context of activity recognition, there is very little
work reported using semi-supervised and unsupervised
learning (e.g., [6] and [7]). Supervised learning is predom-
inant in this literature. For example, feedforward neural
networks are used in [8] and multi-class support vector
machine in [9]. Other techniques have also been considered.
For example, predictive models like binary decision trees

and threshold based classifiers respectively in [10] and
[11], and probabilistic models like HMM and Näıve Bayes
classifiers respectively in [12] and [13]. Some researchers
have considered issues regarding implementations [14].

All the techniques mentioned above consider offline
training of the acquired data. To the best knowledge
of the authors, there appears to be no work reported
that explores online sequential learning. From a practical
viewpoint, online learning is better suited for real-time
applications. Moreover, offline techniques rely on the fea-
tures that are extracted from the signals in the dataset.
Intuitively, this process is computationally expensive and
time consuming.

The back propagation algorithm (BPA) is an algorithm
that can be considered for sequential learning. However, it
is well-known that BPA requires a rather long time to train
the network. Further, it is quite likely that learning stops
as it gets trapped in a local minimum. Huang and his co-
workers proposed the Extreme Learning Machines (ELMs)
that overcome these drawbacks [15]. Such machines are
feedforward neural networks (FFNNs) with a single hidden
layer. The synaptic weights corresponding to the input
layer is made independent of the environment by keeping
it fixed, and the synaptic weights of the output layer
is determined as a solution to a least-squares problem.
Evidently, the training time is much faster than BPA as
the requirement for iterations is completely eliminated.

The authors in [16] proposed a sequential version of
ELM and called it the online sequential extreme learning
machine (OSELM). This algorithm requires the inversion
of a matrix that is related to the data. However, it has been
the experience in [17] that OSELM can perform rather
poorly as this matrix is often singular or nearly singular.
Another sequential variant called the sequential extreme
learning algorithm (SELA) was considered in these papers,
and have been observed to perform quite satisfactorily in
the context of system identification and control.

The goal of this paper is two-fold: First, to propose a
methodology that would provide comparable classification
accuracy in the context of human activity recognition.
The methodology does not require feature extraction and
allows sequential learning. The second objective is to use
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the sequential variant SELA in the context of pattern
classification. The methodology is explained in Section II
and the learning algorithm in Section III. The results using
an available dataset is presented in Section IV.

II. Methodology

The database of signals is chosen from an open source
provided by Smart Labs [18]. This consists of six basic
daily-life activities. Of these, three are static in posture
and three are dynamic. The former has subjects standing,
sitting or lying down, and the latter has subjects walking,
climbing down a staircase or climbing up a staircase.
Specifically, a group of 30 subjects in the age group 19–48
followed a protocol of activities whilst wearing a Samsung
Galaxy SII smart-phone. Each subject began in the stand-
ing position and continued to do so for 30 seconds, followed
by sitting during the next 15 seconds, and again standing
for 15 seconds. The subjects then lay down for the next 15
seconds followed by intervals of 15 seconds each of sitting
and then lying down. They then walked for 30 seconds,
and then alternated (over three cycles) between climbing
down the staircase and climbing up the staircase, each for
12 seconds. Between each task the subjects rested for 5
seconds. Each subject undergoes the protocol of activities
twice; one with the device mounted on the waist, and for
the other, the location of the sensor is left as a choice to
the subject.

Therefore, the signals are measured for a total 192
seconds using the accelerometer and the gyroscope of the
smart-phone. The sampling frequency is 50 Hz. Whilst the
former provides the acceleration along the three axes of an
inertial reference frame, the latter provides three angular
velocities with respect to the same reference frame. Thus,
there are six signals for each subject. A total of 856 signals
were extracted from the dataset. A sample of the raw
signals acquired from the sensors for the different activities
are shown in Figures 1–3.

The objective in this paper is to differentiate and classify
using artificial neural networks the six activities without
any pre-processing and feature extraction. Moreover, the
neural networks are trained sequentially. Thus, the pro-
posed methodology resembles closer to the working of
the human cognitive process wherein the signals (e.g.,
speech, visual, smell) are processed sequentially without
any explicit feature extraction.

The schematic of the proposed methodology is given in
Fig. 4. Three feedforward neural networks (FFNNs) are
considered, one for each axis; these are denoted Nx, Ny

and Nz. The outputs of the three networks are jointly
considered for classification. Thus, we use a committee of
FFNNs for classification of human activities. Moreover,
we avoid entirely pre-processing the signals and extract-
ing features from the signal. That is, the inputs to the
networks are the raw signals, and the emphasis is on online
sequential processing of data. To our best knowledge such
an approach to pattern classification is novel.
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Fig. 1. Signals acquired from the sensors for different activities: (a)–
(c) — Walking. (d)–(f) — Climbing up the stairs.
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Fig. 2. Signals acquired from the sensors for different activities: (a)–
(c) — Climbing down the stairs. (d)–(f) — Sitting.

The inputs to the FFNNs consist of the present and
previous values of the signals. The block TDL in Fig. 4
represents the tapped delay line that achieves this. In this
paper we consider a TDL of length 20. In order to reduce
the computations, we slide the window of 20 samples by
five, thereby creating an overlap of 15 samples. This is the
block SW in Fig. 4.

Each network has six outputs corresponding to the
six classes. Thus, for every window of 20 samples, each
network yields an output vector that belongs to IR6. As-
suming a total of M windows, we concatenate the outputs
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Fig. 3. Signals acquired from the sensors for different activities: (a)–
(c) — Standing. (d)–(f) — Lying down.
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Fig. 4. The schematic for the proposed methodology. Here, SW is
the sliding window, TDL is the tapped delay line, Nx, Ny and Nz are
the FFNNs for the x, y, and z axes, and α1, α2 and α3 are constants.

to form a matrix of dimensions 6×M . The output matrices
for the x, y and z axes are respectively denoted Ox, Oy

and Oz. The averages of the six rows are determined, and
the class information extracted from these averages. Thus,
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where a is either x, y, or z. Clearly, the location of
the maximum of the six elements of µa is the class to
which the signal belongs. In this paper we consider a
convex combination of the outputs of the three networks
to determine the class. That is,

µ = α1µx + α2µy + α3µz

where the constants are such that 0 ≤ αi ≤ 1, α1 +

α2 + α3 = 1, and µ =
(

µ1 · · · µ6

)T

. The class is

determined as follows:

c = arg max
1≤i≤6

µi

During the training phase, c is the desired class of the
signal.

In this paper, the networks are trained using a sequential
variant of the extreme learning machine, referred to in
the sequel as ‘sequential extreme learning algorithm,’ and
denoted SELA. This is described in the next section.

III. Sequential Extreme Learning Algorithm

Consider an FFNN with a single hidden layer. The input
layer has m0 nodes, the hidden layer has m1 neurons
and the output layer has m2 neurons. Such a network
is denoted Nm0:m1:m2

. Whilst the hidden layer has a
nonlinear activation function, the output layer is linear.
For an FFNN Nm0:m1:m2

, the matrix of synaptic weights
that connects the inputs nodes to the hidden layer is
denoted W1, and the matrix of synaptic weights that
connects the hidden layer to the output layer is denoted
W2. Clearly, W1 ∈ IRm1×(m0+1) and W2 ∈ IRm2×(m1+1),
where the bias is also taken into account. The activation
function of the hidden layer is φ(v) = a tanh(bv), and the
output layer is a linear layer with unity gain. We denote
the input to the network at instant k as xk and the outputs
of the hidden and output layer respectively denoted y1,k

and y2,k. The desired output at instant k is denoted yd,k.
Clearly, xk ∈ IRm0 , y1,k ∈ IRm1 , and y2,k and yd,k ∈ IRm2 .

The extreme learning machine (ELM) is an algorithm
to determine the synaptic weights using all the available
data. Here, the weight matrix W1 is randomly initialised.
The outputs of each layer can be computed as follows:

y1,k = φ (W1,kȳ0,k)

y2,k = W2,kȳ1,k (1)

where

ȳ0,k =





1

xk



 , ȳ1,k =





1

y1,k



 ,

For the given training data is {xk,yd,k}N
k=1, the outputs of

the hidden layer for all the N inputs are computed using
(1) and concatenated as follows:

Y1 =
(

ȳ1,1 ȳ1,2 · · · ȳ1,N

)

∈ IR(m1+1)×N

The output y2,k of the FFNN to the N input patterns
should match the desired value yd,k. That is,

Y2 = W2Y1 = Yd, (2)

where Yd =
(

yd,1 yd,2 · · · yd,N

)

∈ IRm2×N . The

only training required is to determine W2 from (2):

W2 = Yd Y T
1

(

Y1 Y T
1

)−1
. (3)



This is merely the least squares solution to (2) where the
cost function J1 = ‖W2Y1 − Yd‖ is minimised.

The ELM assumes that all data is available a priori.
When data arrives sequentially one-by-one, the weight
matrix W2 is updated as follows:

Pk+1 = Pk −
Pky1,k+1y

T
1,k+1Pk

1 + yT
1,k+1Pky1,k+1

(4)

W2,k+1 = W2,k + (ym,k+1 − W2,ky1,k+1)y
T
1,k+1Pk+1(5)

with W2 and P initialised as follows: W2,0 = 0m2×(m1+1)

and P0 = 1
λ
I .

Comments: (i) Using a derivation similar to that of the
recursive least squares algorithm (RLS) it can be shown
that limk−→∞ W2,k+1 = W2,∗, where W2,∗ is the minimiser
to the functional ‖W2Y1 − Ym‖ + λ‖W2‖. The parameter
λ is also known as the regularisation parameter based
on the minimisation of the Tikhonov-Phillips functional
[19], [20]. (ii) The first sequential ELM algorithm was
proposed in [16], referred to as the OSELM. This algorithm
requires two phases. In the boosting phase, the initial
weight matrix W2,0 is determined using (3) with an initial
chunk of data N0. Subsequently, the weights W2 is updated
using (4) and (5). An assumption is that the inverse of
Y1,0Y T

1,0 should exist; here, Y1,0 is the output of the hidden
layer with the initial chunk of data. This implies that
this data should be linearly independent. In [17], this
is discussed further, and it was demonstrated that this
algorithm together with other sequential variants perform
rather poorly in the context of system identification and
control. In contrast to OSELM, our algorithm requires no
boosting phase. Accordingly, it overcomes the drawbacks
of OSELM, and it was shown to work well in applications
related to identification and control of nonlinear systems.

IV. Results

As mentioned earlier, the objective is to classify some of
the basic activities of a human. Specifically, we consider
both static and dynamic situations. The former consists
of subjects standing, sitting or lying down, and the lat-
ter consists of subjects walking, climbing up or down a
staircase. The dataset consists of 856 signals. Of these,
796 signals are used to train the networks, Nx,20:120:6,
Ny,20:120:6, and Nz,20:120:6. (Thus each network has 20 in-
put nodes, 120 neurons in the hidden layer, and 6 neurons
in the output layer. This number of hidden neurons was
chosen after many experiments.) The methodology was
explained earlier in Section II and depicted in Fig. 4. The
remaining 60 signals are used as test signals to determine
the classification performance. The signals corresponding
to walking, climbing up the stairs, climbing down the
stairs, sitting, standing and lying down are respectively
given the labels 1, 2, 3, 4, 5 and 6, and correspond to the
classes C1, C2, . . . , C6.

The confusion matrices related to the training and
testing dataset are shown in Figures 5 and 6. In these
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Fig. 5. The confusion matrix corresponding to the training phase.
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Fig. 6. The confusion matrix corresponding to the testing phase.

figures, the diagonal elements show the number and per-
centage of correct classifications. Thus, of the 796 signals
used for training the networks, 114 of these have been
correctly classified as C1 (i.e., 14.3%), 164 of these have
been correctly classified as C2 (i.e., 20.6%), and so on. It
may be noted that the percentage accuracy is maximised
by carefully choosing the constants α1, α2 and α3 in Fig. 4.
After several experiments, we chose α1 = 0.4, α2 = 0.41
and α3 = 0.19. This implies that the signals along the x

and y axes play a dominant role, and that the signals along
the z axis cannot be ignored.

The off-diagonal elements represent incorrectly classified
samples. Three samples that belong to C1 (i.e., 0.4% of the
total samples) have been wrongly classified as belonging



TABLE I
Classification Accuracies for Training and Testing Data

with 90:10 Rule.

Class Training Data Testing Data

C1 97.4 100.0

C2 94.8 100.0

C3 93.8 100.0

C4 59.1 70.0

C5 90.0 90.0

C6 97.3 100.0

Overall 89.7 93.3

to C2. Since no other samples of C1 are wrongly classified,
the percentage of correct classification is 97.4% of 117
samples, and the percentage of incorrect classification is
2.6%. Similarly, there are a total of 173 samples in C2; of
these, 164 are correctly classified (i.e., 94.8%) and nine
are incorrectly classified (i.e., 5.2%). The latter includes
five (i.e., 0.6% of the total samples) classified as C1 and
four (i.e., 0.5% of the total samples) classified as C2.
Each column therefore provides this information about
a particular class. Accordingly, the last row gives the
percentage of classification — correct and incorrect — for
each class. For ease of reference, the percentage of correct
classification is given in Table I. The worst results are for
C4 where 35 have been incorrectly classified as C5 and ten
have been incorrectly classified as C6. That is, a number
of samples corresponding to subjects who are sitting have
been incorrectly classified as subjects who are standing or
lying down.

Finally, out of 123 classified as C1, 114 of these are
correct (i.e., 92.7% of 123), and 9 are incorrect (i.e.,
7.3% of 123). Similarly, out of 174 classified as C2, 164
(i.e., 94.3% of 174) are correctly classified and 10 are
incorrectly classified (i.e., 5.7% of 174). The last column
of the confusion matrix provides this information. Overall,
89.7% of all the samples have been correctly classified, and
10.3% of all the samples are incorrectly classified.

The confusion matrix related to the testing data is
shown in Fig. 6. There are 60 samples in this dataset, and
these are samples that the networks have not seen a priori.
Clearly, the overall system has classified correctly 93.3%
of all the samples, and classified incorrectly 6.7% of all
the samples. That is only 4 of the samples are incorrectly
classified.

The accuracy achieved by using three networks trained
with SELA is comparable to that obtained using a multi-
class support vector machine in [18], resulting an accuracy
of 96%. However, in contrast to the methodology proposed
in this paper, the authors in [18] extract first a total of
561 features after the signal has been pre-processed. The
reason for our results to be poorer relative to that in
[18] is due to C5, the class of subjects sitting down, and

TABLE II
Averaged Classification Accuracies for Training and

Testing with 90:10 Rule.

Class Training Data Testing Data

C1 99.33 100.0

C2 90.83 91.71

C3 93.61 94.71

C4 62.14 61.92

C5 88.26 88.07

C6 95.99 96.17

Overall 89.11 88.28

TABLE III
Averaged Classification Accuracies for Training and

Testing with 80:20 Rule.

Class Training Data Testing Data

C1 98.78 98.30

C2 90.78 89.87

C3 92.63 92.48

C4 61.32 59.06

C5 88.21 89.69

C6 96.28 94.73

Overall 88.77 87.63

the possibility of confusing this with subjects standing
or lying down. It may be noted that similar issues were
observed in [18]. (In that paper, the authors attributed
this to the physical location of the smart-phone.) However,
they had a greater problem with the dataset of subjects
standing compared to that of subjects sitting down, which
is different from that observed in this paper. For dynamic
situations where the subjects are walking or climbing, the
classification accuracy achieved in this paper is 100%. In
contrast to this, the authors in [18] achieve 96%, 98% and
99% respectively for classes C1, C2 and C3.

Comments: The aforementioned results are for segregat-
ing the data into training and testing pairs using the 90:10
rule. For the same segregation, the results averaged over 25
trials are given in Table II. Other ways to segregate the
data were also considered. The results averaged over 25
trials for 80:20 and 75:25 rules of segregation respectively
are shown in Tables III and IV. Evidently, the averaged
classification accuracies are fairly consistent. They do not
appear to be affected by either the manner in which the
data are segregated. Moreover, the effect of randomising
the weight matrix W1 appears to have only little effect on
the classification results.

For our final comparison, we consider networks trained
using the conventional back propagation algorithm using
batch processing. We obtain a classification accuracy of
99.7%, which is better than even the multi-class sup-



TABLE IV
Averaged Classification Accuracies for Training and

Testing with 75:25 Rule.

Class Training Data Testing Data

C1 98.95 98.48

C2 90.69 88.85

C3 93.76 92.54

C4 62.81 58.30

C5 88.78 85.92

C6 95.88 96.12

Overall 89.18 87.16

port vector machine used in [18]. We note, however, the
training-error convergence is rather slow when using the
back propagation algorithm. On the contrary, the pro-
posed methodology circumvents pre-processing and fea-
ture extraction making the process much faster. Even
though the accuracy trade-off is about 6%, our method
has the advantage in that it is more pragmatic for real-
time applications where the data arrives sequentially one-
by-one.

V. Conclusions

A methodology for human activity recognition was pro-
posed in this paper. A committee of three feedforward
neural networks was used to classify six typical human
activities. With no pre-processing and feature extraction
and with online sequential learning, the achieved classifi-
cation accuracy is comparable to that of other techniques
that rely on feature extraction. The proposed methodology
is closer to the human cognitive process. The networks
are trained using an alternative sequential variant of the
extreme learning machine.
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