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Abstract— Deep learning is heavily being borrowed
to solve problems in medical imaging applications, and
Siamese neural networks are the front runners of motion
tracking. In this article, we propose to upgrade one
such Siamese architecture-based neural network for robust
and accurate landmark tracking in ultrasound images to
improve the quality of image-guided radiation therapy.
Although several researchers have improved the Siamese
architecture-based networks with sophisticated detection
modules and by incorporating transfer learning, the inher-
ent assumptions of the constant position model and the
missing motion model remain unaddressed limitations.
In our proposed model, we overcome these limitations
by introducing two modules into the original architecture.
We employ a reference template update to resolve the
constant position model and a linear Kalman filter (LKF) to
address the missing motion model. Moreover, we demon-
strate that the proposed architecture provides promising
results without transfer learning. The proposed model was
submitted to an open challenge organized by MICCAI
and was evaluated exhaustively on the Liver US Track-
ing (CLUST) 2D dataset. Experimental results proved that
the proposed model tracked the landmarks with promising
accuracy. Furthermore, we also induced synthetic occlu-
sions to perform a qualitative analysis of the proposed
approach. The evaluations were performed on the training
set of the CLUST 2D dataset. The proposed method outper-
formed the original Siamese architecture by a significant
margin.

Index Terms— Convolutional neural networks (CNNs),
Kalman filter, Siamese networks, speckle tracking, ultra-
sound (US) image sequences.

I. INTRODUCTION

MOTION tracking has wide range of applications in
diagnostic ultrasound (US). It is used in several tech-

niques, such as elasticity imaging [1], blood flow imaging
[2]–[4], elastography [5], photoacoustic speckle tracking [6],
phase-aberration correction [7], [8], and echocaridography [9].
Due to its wide range of applications, different motion tracking
methods have been proposed [10]. They can be broadly
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classified as frequency-domain techniques [11], time-domain
techniques [12]–[14], and optical flow-based techniques [15].

Speckles formed in US images have been commonly used
for 2-D time-domain-based tissue motion tracking. Speckles,
in US images, are formed by the combination of construc-
tive and destructive interference of echoes from scatterers
in the observed tissue. Speckle tracking was first used by
Trahey et al. [3] for blood velocity imaging that employed
correlation-based motion tracking technique, which was angle-
independent. Combining signal correlation with local smooth-
ness as prior information to improve displacement estimation
motivates the development of the probabilistic algorithm,
such as predictive search and Bayesian speckle tracking
[13], [14]. Predictive search algorithms utilize the available
prior information and then use certain predictive strategies
to advance the estimation process. Chen et al. [12] proposed
a predictive search strategy called “quality-guided” tracking,
where an initial brute-force search is employed to obtain
the prior information and then use a recursive search until
all estimation locations are completed. On the other hand,
McCormic et al. [13] first proposed to use the concept of
Bayes theorem to regularize speckle tracking. It was an itera-
tive algorithm where displacement estimation at one location
can be gradually improved by taking information from its
neighbors. Byram et al. [14] developed a similar but more
general Bayesian framework for speckle tracking. One of
their main contributions was the improvement of the discrim-
inant ability by appropriately scaling the maximum likelihood
function.

Furthermore, Ebbini [16] proposed phase coupled 2D
speckle tracking algorithm, which couples the phase and
magnitude gradients near the correlation peak to determine
its coordinates with subsample accuracy in both axial and
lateral directions. To overcome the limitations of relatively
coarse lateral sampling, Almekkawy and Ebbini [17] proposed
a multidimensional speckle tracking with subsample accuracy.
To further improve the tracking accuracy, Rebholz et al. [18]
proposed a 2-D iterative projection (TDIP) algorithm using the
Riesz transform. The TDIP method performs iterative projec-
tions and uses the aggregate of these projected locations to
estimate the motion. In [19], synthetic lateral phase was used
to overcome the inherent limitation of speckle tracking, where
lateral displacement estimates are much less accurate than
axial displacement estimates. Other approaches include optical
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flow-based tracking [15], [20], [21], kernel-based mean-shift
tracking [22], and correlation-based tracking [23], [24]. As a
result of contributions from various groups, speckle tracking
has been used in various techniques, such as measurement of
ventricular torsion [25], quantifying tendon displacement [26],
elastography [27], and echocardiography [28], [29].

Among the 2-D time-domain motion tracking techniques,
one of the most commonly used algorithms for tracking in US
images is block matching [30]. Researchers have worked on
different applications of block matching including tracking of
carotid artery wall motion [31], [32], subsample displacement
estimation using Kriging interpolation [33], shear strain and
motion amplitude within the arterial wall [34], and study
of motion dynamics of carotid atheromatous plaque [35].
In any typical block matching-based tracking, a reference
block (window/kernel) is defined in the first frame and is
tracked in the subsequent frames. Any block in the subsequent
frame that is subject to search is called the candidate block.
The similarity between the reference block and the candidate
block is quantified by defining a cost function. The best match
is obtained by choosing a match with either minimum or
maximum value of the cost function. Cross correlation and
normalized cross correlation (NCC) are common cost func-
tions used in motion tracking [36], [37]. The search algorithm
to improve processing speed in the context of block-matching
has also been proposed [38]. However, recent advancements
in deep learning have proven to be extremely effective for
similarity matching-based motion tracking.

Deep learning techniques have gained significant atten-
tion toward a number of imaging tasks, such as object
recognition [39], visual object tracking [40], and image seg-
mentation [41]. Convolutional neural networks (CNNs) are
slowly being borrowed for medical imaging including US
imaging [42]. Notably, CNNs are being extensively used
for beamforming [43]–[45], US image segmentation [46],
and image reconstruction [47], [48]. Deep learning has
also been applied to motion estimation in US images.
Dosovitskiy et al. [49] proposed a deep learning model called
Flownet for end-to-end motion estimation. Peng et al. [27]
proved that an updated model called Flownet2.0 was feasible
for speckle tracking-based strain elastography. Based on the
Flownet2.0 architecture, Kibria and Rivaz [50] applied CNN,
called global US elastography network (GLUENet), to address
the decorrelation in estimating displacement field. Further-
more, Tehrani and Rivaz [51] also applied deep learning for
displacement estimation in US elastography. All the aforemen-
tioned deep learning models formulate optical flow estimation
as a learning problem. Siamese architectures have also been
explored to estimate motion in US images [52], [53].

In this article, we propose to adopt a Siamese network
to perform motion tracking in US images. Specifically,
we adopt the fully convolutional Siamese network (SiamFC)
proposed by Bertinetto et al. [40]. In our associated confer-
ence paper [54] and presentations [55], [56], we proved that
the Siamese network-based deep learning model could be used
to track regions of interest (ROIs) in US image sequences.
Despite the remarkable efficiency of SiamFC, it suffers two
major limitations. First, it considers a constant position model

and, therefore, is extremely sensitive to the deformation of
the reference object. Second, it is a detection-based tracker
and does not consider any motion model. Consequently,
tracking of the reference object is solely dependent on the
detections obtained in each frame. In order to overcome these
limitations, an upgraded version of the SiamFC is proposed
in this article. The two limitations of SiamFC are overcome
with the introduction of two new modules into the original
architecture. First, the template update module is introduced
into SiamFC making it robust to the deformation of the ref-
erence object. This resolves the issue of the constant position
model. Second, a linear motion model is introduced to the
original architecture to address the issue of the missing motion
model. The prediction from the linear motion model and
the detections (measurement) from the SiamFC are combined
using a linear Kalman filter (LKF) (henceforth, the second
module is simply referred to as the LKF).

Evaluation of the proposed model was performed by track-
ing landmarks in US images acquired during image-guided
radiation therapy. The motion caused due to the patient’s
respiration negatively affects image-guided therapy. Forcing
patients to hold their breath is often unreliable [57]. Fur-
thermore, challenging scenarios posed by the US images
complicate the tracking procedure, as represented in Fig. 1.
The scenarios include low signal-to-noise-ratio images, poor
foreground–background distinction, multiple landmarks with
similar appearance, and shadowing caused by airflow. Thus,
robust and accurate tracking is of vital importance in
image-guided radiation therapy. The performance of the pro-
posed model was submitted to the MICCAI CLUST chal-
lenge [57], [58] for evaluation and was compared with
the existing state-of-the-art method [52] and several other
approaches [53], [59]–[66]. It should be noted that our model
does not incorporate transfer learning. That is, the network
is not trained with US images, unlike the other CNN-based
methods that entered the challenge. Network weights from
the original architecture are retained. The proposed model is
a class-agnostic tracker and can be used in motion tracking of
any landmark based on the user’s choice.

II. MATERIALS AND METHODS

A. Fully Convolutional Siamese Neural Network

In this article, we adopt the SiamFCs developed by
Bertinetto et al. [40], which is briefly explained in this
section. Siamese networks or twin networks are two artificial
networks working in parallel for two different input vectors (in
our case, images). Both networks apply identical transforma-
tion (use same weights) on both inputs to perform similarity
matching on the two input images. Fig. 2 represents a pair of
Siamese networks. Motivation for the use of Siamese networks
arises from the scarcity of available labeled data for learning.
This problem is typically called one-shot learning [67]. Facial
recognition [68] best explains the need for one-shot learning.
Collecting several labeled data to classify every face is absurd
and infeasible. Therefore, the problem is to recognize another
instance of the same class with just one available labeled
data. In the Siamese architecture, the same network is used in
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Fig. 1. Sample frames from different image sequences of CLUST
2D dataset that pose challenging situations for accurate landmark
tracking. (a) Image with low signal-to-noise ratio. (b) Image in which
the landmark marked in red “x” is almost indistinguishable form the
background. (c) Landmarks that have very similar appearance models.
(d) Air-shadowing.

parallel to generate feature maps of two input images and learn
a distance function (represented by the Merge block in Fig. 2)
between the two feature representations.

In the context of motion estimation, Siamese architectures
formulate the problem as convolutional feature cross correla-
tion between the reference block (usually defined as the ROI
in the first frame of the image sequence) and the candidate
blocks within a predefined search region. As mentioned earlier,
similarity matching in US images is performed mostly using
block-matching techniques, where a cost function, such as
mean absolute difference (MAD), mean squared error (MSE),
or NCC, is used to calculate the similarity between the
reference block and the candidate block in an iterative fashion.
The predefined search region is searched exhaustively to obtain
the best-matching candidate block. Consequently, the cost
function is calculated in every iteration, making the method
computationally expensive.

Bertinetto et al. [40] employ a deep learning approach to
solve the similarity learning problem. A deep CNN is trained
in an initial off-line phase to solve the similarity learning prob-
lem. During tracking, the CNN is simply evaluated to obtain
the best-matching candidate block. Specifically, a Siamese
neural network is trained to locate the reference block within
a larger search region of the subsequent frame. Siamese net-
works are advantageous in which they use pretrained networks
and can work as class-agnostic trackers. Deep learning archi-
tectures without pretrained networks (i.e., the networks that
learn online) can only learn data that are derived exclusively

Fig. 2. Schematic of the Siamese network. The Siamese network takes
two vectors (images) as inputs and applies identical transformation to
both inputs. The networks Net 1 and Net 2 are identical. Net 1 is applied
on the labeled data Input 1, and Net 2 is applied on the candidate Input 2.
A Merge layer is then used to combine the two representations.

from the input video alone. This limits the network from
learning more advanced models. In addition, such methods
will apply stochastic gradient descent to update their model
and fail to operate in real time.

In SiamFC, a function f (z, x) is a Siamese
architecture-based deep CNN, which learns to compare
the reference block z and the candidate block x . A high score
is returned if both blocks represent the same (or similar)
object, and a low score otherwise. This function is applied
to all possible candidate blocks within a predefined search
region. Since the architecture is fully convolutional (a network
without any dense layers), it allows us to input a larger search
region and compute the similarity for all translated candidate
blocks in a single evaluation. The two networks—Net 1
and Net 2—shown in Fig. 2 represent the same CNN that
resembles the architecture proposed by Krizhevsky et al. [39].
Consequently, identical transformation (ϕ) is applied on both
inputs Input 1 and Input 2 (in our case, z and x , respectively),
as shown in Fig. 2. Their representations are then combined
using another function g, as shown in the following equation:

f (z, x) = g(ϕ(z), ϕ(x)) (1)

where g can simply be a distance or a similarity metric.
Specifically, in SiamFC, the output feature maps obtained by
applying the transformation ϕ on both inputs are combined
using a cross correlation layer. Since the search region is larger
than z, the output of this network is a score map corresponding
to the number of candidate blocks within the search region.
Fig. 3 represents the detailed architecture of SiamFC.

As mentioned earlier, training of SiamFC in [40] was done
in an initial off-line phase using the dataset of annotated
videos. It should be noted that the network was trained using
the ILSVRC dataset [69] that consists of camera images
of real-world objects, such as animals, vehicles, and house-
hold items, and the network was not retrained using US
images for our application. Furthermore, SiamFC does not
update the template model or incorporate any motion model.
Although researchers have improved the existing architecture
using transfer learning with sophisticated models [52], [53],
the aforementioned limitations remain unaddressed.
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Fig. 3. SiamFC proposed in [40]. The reference block z and the search region centered around z with candidate blocks x are Input 1 and Input 2,
respectively. The convolutional stage resembling the architecture proposed in [39] forms Net 1 and Net 2. The fully convolutional property of the
architecture allows inputting images of different sizes. Finally, the cross correlation layer is used to merge the two representations in SiamFC. The
orange and green pixels in the score map represent the correlation score of the two translated subwindows in the search region. The candidate
block with the highest correlation score is selected as the tracked output.

Fig. 4. Schematic of the upgraded SiamFC. Considering detection from
SiamFC as the measurement and the output of the linear motion model
as the prediction, LKF generates the corrected outputs. If the corrected
output is within the permissible correlation threshold, the reference block
is updated. Otherwise, the reference block is restored from the most
recent frame.

In this article, we emphasize that addressing these issues
is of vital importance. Two major contributions of this article
are given as follows: 1) we upgrade the underlying tracker by
incorporating the template update module and 2) we introduce
a motion model to predict the motion of the ROIs. These two
modules are explained in Sections II-B and II-C.

B. Template Update

SiamFC is a detector-based tracker and, hence, sensitive
to deformations. In SiamFC, the features extracted from the
reference block are compared with the features of candidate

blocks of subsequent frames. It then returns a high score
if the two images are matched or a low score otherwise.
As mentioned earlier, ϕ is used to extract the features of
the reference block. This becomes problematic when there
is a change in the appearance of the reference block due to
artifacts, such as speckle decorrelation, out-of-plane motion,
or human errors in handling US probes. To overcome this
limitation, a go-to solution is to update the template in every
frame. Then, the template update module adapts the tracker
to changes in the structure of the reference object every
frame. However, updating the template every frame becomes
a problem in cases such as out-of-plane motion. For instance,
if we update the template when the reference object is out of
the plane, tracking fails miserably in the subsequent frames.
In order to avoid this, we propose to perform anchoring of
the reference object. Anchoring is the process of updating
the reference object only within a permissible threshold of
change. It is analogous to anchoring an object (e.g., a ship)
with an anchor, where the object is allowed to move within
a permissible radius equal to the length of the anchor chain.
Similarly, we allow updation of the template by thresholding
based on a correlation score between reference block from the
previous [(n − 1)th] frame and the best-matching candidate
block from the current (nth) frame. Let z and xk represent
the reference block and the best-matched candidate block
within the search region x , respectively. Then, the correlation
coefficient G is calculated using the following equation:

G =
∑

i

∑
j

(
zi j − z̄

)(
xk

i j − x̄ k
)

√∑
i

∑
j

(
zi j − z̄

)2
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i

∑
j

(
xk

i j − x̄ k
)2

. (2)
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C. Linear Kalman Filter

In order to address the missing motion model, we propose
to introduce a simple LKF. In the proposed design, we use (3)
and (4) to model the pixel coordinates. In (3), s represents
the displacement of the pixel in the Cartesian grid. Their
location is represented by its coordinates (x, y) for lateral and
axial positions, respectively. Similarly, in (4), v represents the
velocity of the pixel represented by (ẋ, ẏ) in lateral and axial
directions, respectively. The position and velocities of the pixel
in both directions are considered to be the states of the system
represented as xk = [x, y, ẋ, ẏ]T . Also, a and dt represent
acceleration and time step, respectively, in both equations

sk = sk−1 + vk−1 dt + 1

2
a dt2 (3)

vk = vk−1 + a dt. (4)

The above motion model is implemented using an LKF.
We model the state and measurement equations of the LKF as
follows:

xk = Axk−1 + Buk + nk (5)

zk = Hxk + wk . (6)

In (5), xk represents the current state, A and B represent
the state transition matrix and the control matrix, respectively,
and uk and nk represent the control vector and the process
noise, respectively. In (6), zk represents the measurement of
the true state xk. H represents the measurement model, and wk

represents the measurement noise. The subscript k represents
the time instance.

Kalman filtering is carried out in two phases: prediction
phase and update phase. The two phases are briefly described
as follows.

1) Prediction Phase: In this phase, the priori state estimate
and the priori state covariance estimate are calculated repre-
sented by (7) and (8). In (7), x̂−

k represents the a priori state
estimate, P−

k represents the a priori state covariance at time
k, and Q represents the process covariance matrix

x̂−
k = Ax̂k−1 + Buk−1 (7)

P−
k = APk−1AT + Q. (8)

2) Update Phase: In this phase, the error between measure-
ment and prediction is appropriately weighted by calculating
the Kalman gain. With the available Kalman gain and the
new measurement, the posterior estimate of the state x̂k is
calculated. Finally, we update the posterior estimate of the
state covariance Pk

K = P−
k HT

(
HP−

k HT + C
)−1

(9)

x̂k = x̂−
k + K

(
zk − Hx̂−

k

)
(10)

Pk = (I − KH)P−
k . (11)

In (9), K represents the Kalman gain, and C represents
the measurement covariance matrix. x̂k in (10) represents the
posterior state estimate, and Pk in (13) represents the posterior
state covariance matrix.

From the aforementioned design, the state transition matrix
A and the control matrix B are modeled as follows:

A =

⎡
⎢⎢⎣

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦B =

⎡
⎢⎢⎣

dt2/2 0
0 dt2/2
dt 0
0 dt

⎤
⎥⎥⎦. (12)

Finally, the process covariance matrix (Q) is obtained by
calculating Q = BBT resulting in the model shown as follows:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dt4

4
0

dt3

2
0

0
dt4

4
0

dt3

2
dt3

2
0 dt2 0

0
dt3

2
0 dt2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

3) Upgraded SiamFC: Putting it all together, Fig. 4 repre-
sents the upgraded SiamFC with template update and LKF
modules introduced into the underlying architecture. In sum-
mary, a reference block is defined in the first frame of the
video sequence and is input to SiamFC. It then selects the
best-matching candidate block in the subsequent frame, which
is input to the LKF as measurement. Meanwhile, coordinates
of the centroid of the reference block are predicted based
on the linear prediction model presented in the previous sub-
section. LKF, with prediction and measurements, outputs the
corrected coordinates. If this output is within the correlation
threshold compared to the reference block of the previous
frame, the reference block is updated. Otherwise, the reference
block is restored from the most recent frame.

III. EXPERIMENTS

A. Data: CLUST 2D Dataset

The proposed model was evaluated on a publicly available
open dataset CLUST 2D [70]–[75]. This dataset contains 63
2-D US image sequences of liver acquired from healthy volun-
teers under free-breathing. The dataset contains data provided
by three groups, the Biomedical Imaging Research Laboratory
of CREATIS INSA, Lyon, France (CIL); the Computer Vision
Laboratory, ETH Zürich, Zürich, Switzerland (ETH); and
mediri GmbH, Heidelberg, Germany (MED). A wide range
of US equipment, including five US scanners and six types of
transducers, was used to collect the data. Each image sequence
ranges from 4 s to about 10 min. The temporal resolution
ranges from 6 to 31 Hz. The spatial resolution of the images
ranges from 0.27 mm × 0.27 mm to 0.77 mm × 0.77 mm.
About 38% (24/63) of the image sequences were made avail-
able with annotations for multiple frames as the training set,
and the remaining 62% (39/63) of the image sequences were
released as the testing set, in which annotations were only
available for the first frame. At most four landmarks were
annotated per image sequence. Although multiple landmarks
are provided for a single image sequence, the challenge
requires only single-object tracking at a time instead of mul-
tiobject tracking. A total of 53 landmarks were annotated in
the training set, and a total of 85 landmarks were annotated in
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Fig. 5. Sample frames with annotations provided by the CLUST
organizers. Left: first frame from the image sequence CIL-01 that belongs
to the training set that contains two landmarks. Right: first frame from
the image sequence MED-07-4 that belongs to the testing set, which
contains four landmarks. The annotations are numbered and represented
as yellow dots.

the testing set. In addition, about 10% of the images from
the testing set were manually annotated by three different
observers with a review from an additional observer. Fig. 5
represents sample frames with different numbers of landmark
annotations considered from the training set and testing set
from the CLUST 2D dataset provided by the organizers.
The results for the challenge are evaluated by the MICCAI
organizers, and the results are displayed on the leaderboard
on their website.

A qualitative analysis was also performed on the train-
ing set. In this set of experiments, we tested and analyzed
the contribution of each of the four architectures described:
1) original SiamFC (orgSiamFC); 2) original SiamFC with
template update (TU_SiamFC); 3) original SiamFC with LKF
(LKF_SiamFC); and the 4) original SiamFC with template
update and LKF (upgdSiamFC) were tested using the training
set. Synthetically generated occlusions were induced to mimic
possible artifacts, such as speckle decorrelation, out-of-plane
motion, or human errors in handling US probes. In each of
the image sequences, a rectangular region with pixel values
in the range (0, 255) from a uniform discrete distribution was
induced as occlusion in two consecutive frames around the
reference object. The area of the induced occlusion patch was
nine times the area of the landmark ROI chosen in the first
frame. The occlusions were induced such that the occlusion
patch was centered about the landmark. Such 2-frame occlu-
sions were induced three times at frame numbers 30, 60, and
90. The performance of the four architectures, in this case,
was evaluated by calculating the TE against the ground truth.

B. Performance Evaluation

Given the ground-truth annotations pi and tracked outputs
p̂i , the tracking error (TE) for a given target i is calculated as

TEi (t) = ‖pi − p̂i‖ (14)

where ‖ · ‖ represents the Euclidean distance between the
estimated landmark position pi and its ground-truth annotation
p̂i . The organizers of CLUST challenge evaluate the results
by considering the mean, standard deviation (std), and 95th
percentile (TE95th) of the TE considered over all frames [57].

C. Parameter Initialization

The two modules introduced into the original architecture
require parameters to be initialized. For the template update

Fig. 6. Performance of the proposed model with varying parameter
values in the range �0, 10� for all the image sequences in the training
set. Based on the performance, the coefficient of state uncertainty was
chosen to be q = 7, and the coefficient of measurement uncertainty was
chosen to be r = 3.

Fig. 7. Boxplot of TEmean obtained using upgdSiamFC for all the
sequence groups in the testing set. The figure indicates that two major
outliers (TEmean > 10 mm) from the ETH and the Med2 groups are
responsible for a high TE.

module, the correlation coefficient is set based on trial and
error experiments performed on the training set with a visual
inspection. Having set the correlation coefficient for the tem-
plate update module, we proceed to initialize the parameters
for the LKF.

The LKF needs two parameters to be initialized beforehand:
the coefficient of state uncertainty (q) and the coefficient of
measurement uncertainty (r ). In order to find the appropriate
values for the two coefficients, we ran the proposed model with
varying parameter values in the range (0, 10) and calculated
the TE against the available ground truth. The parameters
corresponding to the lowest TE were chosen.

The landmarks in the CLUST 2D dataset are points repre-
sented by their coordinates (x, y). In order to track these land-
marks, an ROI has to be selected centered on the landmark.
To this end, we choose a rectangular region of predefined
height and width around the landmark available from the first
frame. SiamFC has the capability to adjust the size of the ROI.
Since only centroid locations are provided with the ground

Authorized licensed use limited to: Penn State University. Downloaded on June 08,2022 at 17:50:14 UTC from IEEE Xplore.  Restrictions apply. 



BHARADWAJ et al.: UPGRADED SIAMESE NEURAL NETWORK FOR MOTION TRACKING IN US IMAGE SEQUENCES 3521

truth, we exploit this feature to choose a rectangular region
around the landmark based on visual inspection and then
allow SiamFC to adjust the size of the rectangle in subsequent
frames.

IV. RESULTS AND DISCUSSION

As mentioned earlier, the correlation coefficient G in the
template update module was chosen based on trial and error
experiments with a visual inspection. The value of the cor-
relation coefficient was chosen to be G = 0.7. With the G
set, the linear motion model parameters were chosen based
on the performance of the upgdSiamFC on the training set.
Fig. 6 represents the performance of our approach when using
the two coefficients q and r . The parameters were varied in
the range (0, 10), and the proposed model was run through
all the image sequences provided with the training set. From
Fig. 6, it can be seen that the coefficient pair that produced the
lowest TE were q = 7 and r = 3. The size of the rectangular
region of the first frame varied from 10 mm × 10 mm to
22 mm × 22 mm, depending on the size of the landmark.

A. Quantitative Analysis

The evaluation of the proposed model was performed on the
testing set as specified by the organizers. The performance of
our model on each image sequence group is listed in Table I.
It can be seen that the proposed model achieves an overall
accuracy of 1.59 ± 3.68. Fig. 7 represents the boxplot of
TEmean for each image sequence group. It can be seen that
there are two major outliers (TEmean > 10 mm) that have
extremely high TE. We emphasize that the results were
obtained without performing any transfer learning (retraining
model with US images) on the SiamFC.

Table II presents the comparison of our method with respect
to the other state-of-the-art methods and human observers on
the testing set. In the given table, the No Tracking row indi-
cates that no tracking method was used, and the landmark loca-
tion available on the initial frame was used for the prediction of
the landmark in the subsequent frames. This row indicates the
necessity of an object tracking method for image-guided radia-
tion therapy. The groups in II have presented both CNN-based
methods [52], [53], [66] and traditional methods, such as block
matching [59], optical flow [60], [63], correlation filters-based
matching [61], [65], and SIFT-based feature matching [62].
The CNN-based methods are advantageous in which they
are capable of learning hierarchical features. In addition,
the nonlinearity allows for learning intricate features resulting
in accurate matching.

Fig. 8 represents an example of tracking a landmark in a
randomly chosen image sequence from the training set. The
top two graphs represent the displacement of the landmark
along with lateral (x) and axial directions (y), respectively, for
a set of consecutive frames. Landmark locations obtained by
upgadSiamFC, ground truth, and the no tracking methods are
plotted. Ground-truth locations for landmarks are not available
for every frame. For better visualization, we also display a set
of images with annotations for the landmark location obtained
by the ground truth, upgdSiamFC, and no tracking methods

TABLE I
TRACKING PERFORMANCE FOR EACH SEQUENCE GROUP ON THE

TESTING SET

TABLE II
TRACKING PERFORMANCE OF UPGDSIAMFC AGAINST OTHER

STATE-OF-THE-ART METHODS AND HUMAN OBSERVERS. OUR

METHOD IS HIGHLIGHTED IN BOLD

at the bottom of Fig. 8. The locations corresponding to the
annotations in these images are also plotted in the two graphs
(marked with red “+”).

With a detailed analysis, it was found that the image
sequences ETH-11-1 and Med-11 were responsible for the high
TE. Fig. 9 represents a set of images from the two image
sequences. The first row represents images from ETH-11-1,
where the reference object is completely lost during tracking.
In this particular image sequence, a visual inspection reveals
that there is hardly any difference between background and
foreground. Since our model was not trained using the training
set for this particular dataset unlike [52], [53], it eventually lost
the object resulting in a very high TE (TEmean = 29.45 mm).
The second row represents images from Med-11, where the
reference object was found to be very close to the border
of the US image. The very close proximity of the reference
object to the border prevents the landmark from being centered
within the rectangle. Consequently, the upgdSiamFC failed
to center the landmark within the rectangular region in a
considerably large number of frames resulting in a very high
TE (TEmean = 12.55 mm).

Table III represents the TEmean for each of the image
sequence group after the two outliers were removed (stan-
dard deviation is not shown since tracked outputs for every
frame is not provided by the CLUST organizers). It can be
seen that TEmean reduces considerably for the groups ETH
(1.65–0.99 mm) and Med2 (1.57–0.40 mm). As a result,
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Fig. 8. Tracking of a given landmark by upgdSiamFC. The two top graphs represent the displacement of the landmark along lateral (x) and axial
(y) directions, respectively, for a set of consecutive frames. The ground-truth locations are superimposed on the tracked locations obtained using
upgdSiamFC. Locations of the landmark predicted by No tracking method are represented in dashed lines. A set of frames (eight frames including
the first frame) are also selected to be displayed with annotations from ground truth, upgdSiamFC, and no tracking. Annotations for the selected
frames (except for the first frame) are also plotted on the graphs (marked with red “+”).

Fig. 9. Two image sequences with extremely high TEmean (> 10 mm). First row: images from the image sequence ETH-11-1, where the reference
object is lost due to the lack of difference between background and foreground. TEmean for this sequence was 29.17 mm. Second row: images from
the image sequence Med-11, where the reference object was found to be very close to the border, and consequently, tracker fails to keep up with
the landmark. TEmean for this sequence was 12.55 mm. Ground-truth locations are represented using “+.”

overall TEmean also reduced from 1.59–1.15 mm. With the
two outliers removed, it is worth noting that the perfor-
mance of our proposed model is better than the Siamese
architecture-based method proposed by Gomariz et al. [53]
(see Table II: TEmean = 1.34 mm) despite the fact that transfer
learning using CLUST 2D dataset was not performed on our
model.

The other four outliers (3 mm < TEmean < 6 mm) with
relatively lower TEmean were a result of drastically deforming
landmarks, in which the centroid of the landmarks does
not coincide with the centroid of the rectangle although the
reference object is within the rectangle. Tracking of these land-
marks could be improved by incorporating transfer learning
using CLUST 2D dataset [52], [53].
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Fig. 10. Different scenarios, in which the behavior of the four architectures are show when occlusion was encountered. Rows: image sequences.
Columns: frames considered at different instances of time for the given image sequence. First row: images from ETH-01-2, where only orgSiamFC
fails to retrieve the landmark. Second row: images from CIL-01, in which orgSiamFC and LKF_SiamFC fail to retrieve the landmark. Third row:
images from ETH-04-1, in which orgSiamFC and TU_SiamFC fail to retrieve the landmark. Fourth row: images from ETH-04-2, in which the only
upgdSiamFC was able to retrieve the landmark. Fifth row: images from ICR-01 with a boundary case scenario, where all the architectures fail to
retrieve the landmark. (a) Frame 1. (b) Frame 31. (c) Frame 32. (d) Frame 36.
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Fig. 11. Temporal relationship of different modules of the proposed model with respect to the reference block and the search region. Processing of
a given frame is divided into three parts (in the order): the TU phase �tpn

tu�, the detection phase �tpn
det�, and the LKF phase �tpn

lkf�. The start of the
phases is marked as tni along the time axis, where the superscript n represents the frame number and the subscript i is an integer representing the
beginning of the ith phase. The total processing time per frame �tpn

total� is given by tpn
total = tpn

tu + tpn
det + tpn

lkf.

TABLE III
TRACKING PERFORMANCE FOR EACH SEQUENCE GROUP IN THE

TESTING SET AFTER REMOVING THE OUTLIERS

TABLE IV
TRACKING PERFORMANCE OF DIFFERENT ARCHITECTURES ON THE

TRAINING SET WHEN OCCLUSIONS WERE INDUCED

B. Qualitative Analysis

In order to emphasize the importance of the upgdSiamFC,
synthetic occlusions were induced into each of the image
sequences. As mentioned earlier, four different architectures
were tested for robustness with synthetic occlusions induced
around the landmarks. Table IV represents the performance
of the four architectures on the training set. It is evident
that the best results were obtained when upgdSiamFC is
used. Table IV indicates that template update and LKF do
contribute, individually, toward improving the robustness of
SiamFC to some extent. LKF impedes the detection from dras-
tically changing the location when the landmark is lost due to
an occlusion. This helps the tracker to locate back the reference

object when the occlusion is removed. However, detections can
be very strong in the presence of false positives (landmarks
with similar appearance) around the reference block resulting
in LKF failing to retrieve the original landmark. On the other
hand, template update ensures that the latest appearance of
the landmark is updated as the reference block. Therefore,
template update helps the detection module to retrieve the
landmark despite the change in its appearance compared to
the first frame. Nevertheless, there is no mechanism for the
template update module to hold back detections from going
astray when occlusions are encountered. Therefore, combining
the two modules will ensure that the latest appearance of the
landmark is updated, and the displacement of the detections
is controlled by the motion model. Thus, the upgdSiamFC
outperforms the other three architectures by a significant
margin.

Fig. 10 presents different scenarios substantiating the afore-
mentioned claims. In Fig. 10, five different scenarios are
shown corresponding to five image sequences. Each row repre-
sents an image sequence. Column (a) represents the first frame
of the image sequence. It is obvious that detections from all
four architectures overlap each other. Column (b) represents
the 31st frame of the image sequence with occlusion induced.
It is expected that the behavior of the detection module
in this frame is unpredictable. Column (c) represents the
32nd frame (i.e., frame immediately succeeding the occluded-
frame). Finally, column (d) represents the 36th frame (the fifth
succeeding frame after the encounter of the occlusion).

The first row represents an image sequence (ETH-01-2)
where only orgSiamFC fails to retrieve the landmark. In this
given situation, template update and LKF are individually
good enough to assist orgSiamFC in reviving the landmark.
The second row represents an image sequence (CIL-01),
in which orgSiamFC and LKF_SiamFC fail to retrieve the
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landmark. We attribute this to the presence of a false positive
in close proximity to the original landmark. Consequently,
both orgSiamFC and LKF_SiamFC are pulled toward the false
positive as seen in column (c) of the second row. Although
LKF hampers drastic movement of the detection, strong detec-
tion from false positive dominates the motion model. On the
other hand, TU_SiamFC retrieves the landmark since the
reference model is updated. The third row represents an image
sequence (ETH-04-1), in which orgSiamFC and TU_SiamFC
fail to retrieve the landmark. In this scenario, while the
detection modules in orgSiamFC and TU_SiamFC lost the
landmark to a point of no return due to the unpredictable
behavior, LKF was successful in holding back the detection
and assisting in retrieving the landmark. It should be noted that
upgdSiamFC was successful in all the above scenarios since
at least one of the modules contributed positively in assisting
the detection module to retrieve the landmark. The fourth row
represents an image sequence (ETH-04-2), in which the only
upgdSiamFC was able to retrieve the landmark and all the
other architectures failed to do so. The presence of a false
positive in the ETH-04-2 image sequence pulls LKF_SiamFC
away from the landmark as seen from the image in column
(c) of the sequence. Nevertheless, the most recent appearance
of the landmark together with the LKF, upgdSiamFC, was
able to bounce back to the original landmark. Finally, the fifth
row represents an image sequence (ICR-01) with a boundary
case scenario, where all the architectures fail to retrieve the
landmark. The presence of a false positive, which has a very
similar appearance to the original landmark, renders both the
modules ineffective causing the detection module to shift to
the false positive.

C. Processing Time

Our experiments were run on MATLAB 2019b (Math-
Works, Natick, MA, USA), on a Windows OS operating on
a 3.4-GHz Intel i7 processor with 16-GB RAM. With this
configuration, the average processing time (t p) per frame
of the proposed model was t pn

total = 250 ms, where the
superscript n represents the nth frame. In other words, without
the use of GPU and any code optimization techniques, our
proposed model operates at 4 frames per second (fps) on the
aforementioned machine. Average t p was calculated by taking
the mean of t p over all frames in the CLUST dataset. Fig. 11
illustrates the temporal relationship of different modules of
the proposed model with respect to the reference block and
the search region. It can be seen that, for any given frame,
a template update is carried out first based on the track
output of the previous frame. Detection is performed after the
template update, and finally, the LKF module generates the
corrected output. The detection phase claims the maximum
share of the t p with t pn

det = 230 ms. Processing time of the
template update phase (t pn

tu) and the LKF phase (t pn
lk f ) were

found to be 19.67 ms and 86μs, respectively.
In [40], the authors claim that the original SiamFC operates

at 86 fps on a machine equipped with a single NVIDIA
GeForce GTX Titan X and an Intel Core i7−4790K at 4.0GHz.
From the aforementioned processing time of different phases,

we know that, while the detection phase demands about 91.9%
of the t pn

total, the two newly introduced modules claim only a
negligible fraction with t pn

tu claiming 7.87% and t pn
lk f claiming

0.035% of t pn
total. Therefore, it is easy to see that our proposed

model, with necessary optimization and a GPU, can operate
in real-time.

In summary, it is important for the detection module to
adapt to deforming objects and to have a motion model to
estimate the states of the system over time. Detections tend
to deviate and exhibit unpredictable behavior when artifacts
such as speckle decorrelation, out-of-plane motion, or human
errors in handling US probes are encountered. Best results are
obtained by incorporating the two modules—template update
and LKF—into the original architecture. From the above
results, it is evident that, with a robust model, accurate tracking
can be performed even without performing transfer learn-
ing. Incorporating this architecture to techniques proposed
in [52] and [53], where they trained the Siamese networks
for this particular dataset, can further improve the tracking
accuracy.

V. CONCLUSION AND FUTURE WORK

In this article, we addressed two major limitations of the
Siamese architecture-based object tracker. By introducing the
template update module, we resolved the constant position
model issue and improved the robustness of SiamFC against
deforming landmarks. We implemented an LKF to incor-
porate the missing motion model in the original architec-
ture. The upgraded SiamFC achieved an overall accuracy
of 1.59 ± 3.68 that is comparable to other state-of-the-art
methods. The upgraded SiamFC also provided promising
results against synthetically induced occlusions demonstrating
the potential for accurate and robust landmark tracking. For
our future work, we intend to improve the detection module
of the Siamese network. Using region proposals along with
Siamese architecture and combining it with the two modules
introduced in this article could significantly improve tracking
accuracy. In addition, we also intend to develop nonlinear
motion models tailored to the needs of specific tissue motion.
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