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Abstract—An integral part of modern day health-care is
monitoring the physical activities of human beings. In this paper,
we deal with automatic recognition of some daily activities based
on signals measured using easily-available smart phones. We
present a neural-network based methodology to classify these
signals. In contrast to typical conventional techniques we use
sequential processing of signals and circumvent pre-processing
and feature extraction. In addition, we introduce meta-cognition
to reduce the computations required during the training stage.
We demonstrate that our approach yields satisfactory recognition
accuracies.

I. INTRODUCTION

Monitoring the physical activity of the elderly and special

patients is becoming increasingly indispensable in health-care.

These include patients with Parkinson’s disease which result

in motor disabilities, and patients with Alzheimer’s disease

which result in dementia and an inability for self-care. Typical

activities such as sitting, standing and walking vary consider-

ably from that of a healthy individual [1]. Accordingly, the

importance of automatically recognising and monitoring the

daily activities cannot be over emphasised.

Many techniques that have been developed in the past

depend on the patient wearing multiple sensors. For example,

in [2] and [3], a wireless body sensor network is used to gather

information. The authors in [4] recognises the human activities

from the data gathered with wearable inertial sensors. In a

departure from these, sensors of mobile phones are used in

[5] and [6] to obtain information about the movements. This

appears to be less intrusive and puts patients at ease due to

familiarity with the devices.

Methods for sensor-based activity recognition have been

proposed by several researchers. Examples include the use of

threshold-based classifiers in [8], binary decision trees in [7],

Naïve Bayesian classifiers in [10] and hidden Markov models

in [9]. Artificial neural networks were used in [11] and [12].

Semi-supervised and unsupervised learning are respectively

considered in [13] and [14].

These techniques incorporate offline learning which in-

volves complex data pre-processing and feature extraction.

Accordingly, such techniques can be rather computationally

expensive and time consuming. In contrast, in this paper, we

consider online sequential learning using the data acquired

from the sensors in a mobile phone to recognise some typical

activities of human beings. The proposed methodology does

not require pre-processing of signals and feature extraction.

Since learning is sequential for this algorithm, it is better suited

for real-time employments as signals are directly processed

sample-by-sample. Specifically, we consider an ensemble of

three three-layered feedforward neural networks (FFNNs) to

classify the activities based on sequential processing of the

raw data from the sensors. The networks are trained using

the online sequential learning algorithm (OSLA). Moreover,

meta-cognition is incorporated to monitor learning to reduce

the training time.

The paper is organised as follows: The proposed methodol-

ogy is presented in Section II. The algorithm to train the neural

network is outlined in Section III followed by an introduction

to meta-cognition in Section IV. Simulation experiments are

described in Section V.

II. THE METHODOLOGY

A. The Data

Smart phones are ubiquitous and have a number of built-

in sensors. In this paper we consider the signals recorded

from the accelerometer of a Samsung Galaxy SII mobile

phone. These signals are made available as an open source

by Smart Labs [6]. Recordings of six typical activities are

available in this database. These are not recorded from patients

but normal subjects who are made to walk, climb up and

down a staircase, sit, stand and lie down. These activities are

respectively denoted C1, C2, . . . , C6. Evidently, the first three

are dynamic and the last three are static.

The thirty subjects — all in the age group between 19 and

48 — were required to follow a protocol of activities while

wearing the aforementioned smart phone. The details of the

protocol are available in [6]. To summarise, they stood for 30

seconds, sat for 15 seconds and again stood for 15 seconds.

After this, they lay down for 15 seconds, sat for 15 seconds and

again lay down for 15 seconds. Finally, the subjects climbed

up and down a staircase each of duration 15 seconds. Between

each of these tasks there was a rest period of 5 seconds. All of

these activities were carried out twice. In one set, the device

was placed on the waist, and in the second set, the choice of

the location was left to the subject. The signals are recorded

for 192 seconds and the sampling frequency is 50 Hz. The
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Fig. 1. Accelerations along the three axis for walking (C1: (a)–(c)), climbing
up the staircase (C2: (d)–(f)), and climbing down the staircase (C3: (g)–(i)).
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Fig. 2. Accelerations along the three axis for sitting (C4: (a)–(c)), standing
(C5: (d)–(f)), and lying down (C6: (g)–(i)).

accelerations along the three axes of an inertial reference frame

are measured for each subject by an accelerometer. From the

database, we use a total of 856 signals. Typical acceleration

profiles along the three axes are shown for each activity in

Figures 1 and 2.

B. The Classification Process

The six classes mentioned earlier are to be differentiated

and classified automatically in this paper. Further, this is to be

carried out without any pre-processing and feature extraction.

Towards this, we use feedforward neural networks (FFNNs)

that are trained sequentially. In this manner the methodology

proposed in this paper is more natural in that the human

cognitive process works directly with the raw signals that fall

on the sensors (e.g., visual, auditory and olfactory organs)

without any explicit feature extraction.

We use an ensemble of three FFNNs — one for each axis

— to classify the six human activities, as shown in Fig. 3. We

denote these as Nx, Ny and Nz . The inputs to these networks

are the present and previous values of the raw signals, and

we emphasise sequential processing. Thus, these networks

are essentially recurrent neural networks; i.e., static neural

networks together with a tapped delay line, represented by the

block TDL in the figure. In this paper, the length of the TDL is
chosen to be twenty. Moreover, we consider a sliding window

— depicted as the block SW in the figure — which slides by
five samples resulting in an overlap of fifteen samples. This

reduces the number of computations to some extent.

sx � SW �TDL �rx
Nx

� cx

sy � SW �TDL �
ry

Ny
� cy

sz � SW �TDL �rz
Nz

� cz

Fig. 3. An illustration of the proposed methodology. The blocks SW and TDL
are respectively the sliding window and the tapped delay line. The artificial
neural networks for the x, y and z axes are respectively the blocks Nx, Ny

and Nz .

The class information from this ensemble is determined as

follows: The three outputs cx and cy and cz , respectively from

Nx, Ny and Nz , are vectors belonging to IR6 as there are six

classes involved. The input to each neural network is a window

of twenty samples. The output vectors of each neural network

are concatenated into a matrix. Thus, assuming a total of M

windows, we obtain three matrices of dimensions 6×M . These

matrices are denoted Ox, Oy and Oz , respectively for the three

axes:

Ox =
(

cx,1 cx,2 · · · cx,M

)

Oy =
(

cy,1 cy,2 · · · cy,M

)

Oz =
(

cz,1 cz,2 · · · cz,M

)
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The averages along the six rows are then determined:

μa =
1

M

⎛
⎜⎜⎜⎜⎜⎝

∑M

j=1
Oa,1,j∑M

j=1
Oa,2,j

...∑M

j=1
Oa,6,j

⎞
⎟⎟⎟⎟⎟⎠

=
1

M

M∑
j=1

ca,j (1)

where a is x, y, or z depending on which of the three axes is

being considered. Information about the class is present in the

three vectors μx, μy and μz . In order to determine the class

we consider a convex combination of the three networks:

μ = α1μx + α2μy + α3μz (2)

where the constants are such that 0 ≤ αi ≤ 1, α1 +α2 +α3 =

1, and μ =
(

μ1 · · · μ6

)T

. Finally, the class is deduced

as follows:

l = arg max
1≤i≤6

μi (3)

During the training phase, l is the target or desired class of the

signal. The quantities cd,x, cd,y and cd,z respectively denote

the desired outputs of the three networks. Amongst the six

elements of each vector, the position corresponding to the

desired class label is assigned a unity value and the remaining

elements assigned a value−1; thus, the elements of the desired
output vector for a signal belonging to class Ci are given by

cd,a,m =

⎧⎨
⎩

1, if m = i

−1, if m �= i
(4)

In this paper we train the networks using the online sequen-

tial learning algorithm described in the next section.

III. ONLINE SEQUENTIAL LEARNING ALGORITHM

As shown in Fig. 3, we require three neural networks. Each

one is a feedforward neural network with one hidden layer.

The number of input nodes m0 = 20 as the tapped delay line
in Fig. 3 is of length 20, and the number of output neurons

m2 = 6 as the number of classes is six. If the number of
neurons in the hidden layer is m1, the network is denoted

Na,m0:m1:m2
, where a is either x, y or z. The hidden layer

is nonlinear with the activation function ψ(v) = tanh(v), and
the output layer is linear. Let the synaptic weights connecting

the input nodes to the hidden layer arranged as an array be

denoted W1, and the synaptic weights connecting the output

of the hidden layer to the output layer arranged as an array be

denoted W2. From the equations provided later we can easily

deduce the structures of W1 and W2.

Let the ordered pairs of data during the training phase be

denoted (ra,k, cd,a), where ra,k ∈ IRm0 and cd,a ∈ IRm2 , for

a = x, y and z, and k indicates the sample number. Here, ra,k

is the input to the network and cd,a is the desired class label.

For each of the three axes, the computations in the forward

pass may be summarised as follows:

ȳ1,k = ψ (W1y0,k) (5)

y2,k = W2y1,k (6)

where

y0,k
Δ
=

⎛
⎝ 1

ra,k

⎞
⎠ , y1,k

Δ
=

⎛
⎝ 1

ȳk

⎞
⎠ .

In the online sequential learning algorithm (OSLA), the

weight matrix W1 is initialised randomly and the weight

matrix W2 is set to a zero matrix. Subsequently, the weight

matrix W2 is updated as follows: For k ≥ 0,

Pk+1 = Pk −
Pky1,k+1y

T
1,k+1Pk

1 + yT
1,k+1

Pky1,k+1

(7)

W2,k+1 = W2,k + ek+1y
T
1,k+1Pk+1 (8)

where the error in the a priori estimate

ek+1
Δ
= cd,a − W2,ky1,k+1

and P0 = 1

λ
Im1+1 with Im an identity matrix of dimensions

m × m and λ > 0. The weight matrix W1 is not updated.

It is quite straightforward to show that the update equations

(7) and (8) correspond to the recursive least squares solution

to the Tikhonov-Phillips functional

J = ‖W2Y1 − Yd‖ + λ‖W2‖, (9)

where λ is also known as the regularisation parameter ([15]–

[17]), and

Y1 =
(

y1,1 y1,2 · · · y1,M

)

Yd =
(

cd,a cd,a · · · cd,a

)

The parameter λ provides a trade-off between minimisation of

the training error and the synaptic weights of the output layer.

Clearly, the minimiser of (9) is global.

Comments: (i) In contrast to the back propagation algorithm,
the OSLA converges to the global minimum. Experience

indicates that the convergence of OSLA is faster. It may

be noted, however, that the back propagation algorithm is

applicable to FFNNs with arbitrary number of hidden layers.

(ii) The weight update equations (7) and (8) are similar to

the weight update equations of the online sequential extreme

learning machine (OSELM) proposed in [18], the sequential

version of the extreme learning machine [19]. However, in

contrast to OSELM, the initialisations are quite different.

The different initialisation of OSLA results in much better

performance compared to other sequential forms of learning

including OSELM in the context of system identification and

control [20], [21] and time-series prediction [22].

IV. META-COGNITION FOR ACTIVITY CLASSIFICATION

Learning in the natural world monitors and regulates itself.

This is referred to as meta-cognition in the literature [23], [24],

where it is defined as knowledge and control of cognition.

Accordingly, it aids the learning process and the retention of

knowledge. In this paper, we use meta-cognition to aid the

process of classification of human activity following the spirit

of [25]–[27] for meta-cognition. Specifically, meta-cognition
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MC-Constituent

Control
�

�

Monitor

C-Constituent

Fig. 4. The Nelson-Narens model for meta-cognition. The blocks C-
Constituent and MC-Constituent respectively corresponds to the cognitive
and meta-cognitive constituents.

is used to reduce the computations required during the training

of the three networks Nx, Ny and Nz .

The Nelson-Narens model [28] shown in Fig. 4 is the basis

on which meta-cognition is incorporated into the learning

process. Evidently, it has two parts, the meta-cognitive and

cognitive constituents represented as MC-Constituent and
C-Constituent, respectively. The meta-cognitive constituent
continually monitors the cognitive constituent. Based on some

criteria, it affects the manner in which the cognitive constituent

learns through the control signal.

N �
�

cd

��
��+

−

MC-Unit
� DB

��

���

N � c̄

�

�s

Fig. 5. The overall schematic for classification with meta-cognition. The
blocks DB and N are respectively the decision block and the artificial neural
network.

In our context, the manner in which the Nelson-Narens

model is incorporated into the sequential classification process

is shown in Fig. 5. The cognitive part consists of the ensemble

of the three FFNNs denoted as N in the figure. Each of the
networks has a hidden nonlinear layer and a linear output

layer. The meta-cognitive part has a copy of the cognitive

part. The signal to be classified is shown to the meta-cognitive

constituent which determines the class to which it belongs. (It

must be emphasised that the weights are not updated during the

process; i.e., only the forward pass is considered.) The output

of each network averaged over the M windows (i.e., μa) is

mapped into the interval [−1, 1] by scaling. Let this scaled

output be denoted c̄a. Subsequently, the root-mean-square-

error between c̄a and the desired output cd,a is determined:

εa =

√√√√1

6

6∑
i=1

(c̄a,i − cd,a)2 (10)

Clearly, εa ∈ [0, 2]. The meta-cognitive constituent monitors
the learning process by tracking the value of εa, and decides

upon one of the following actions for the network Na:

1) The synaptic weights of the network are updated.

2) The synaptic weights of the network are not updated.

3) The number of neurons in the hidden layer is increased.

In Fig. 5, these actions are taken by the decision block DB
and results in the control signal in Fig. 4.

Suppose that ε1 > 0 and ε2 > 0 be two a priori chosen
constants such that ε1 < ε2. For the network Na, if εa < ε1,

then its synaptic weights are not updated. This avoids over-

training and contributes to better generalisation property. In

contrast, if ε1 < εa < ε2, then the same signal is presented to

the cognitive constituent once again, and the weights ofNa are

updated in accordance to (7) and (8). Accordingly, the novel

information in the signal is learnt by the appropriate network.

Finally, if εa > ε2, the complexity of the hidden layer of Na

is increased by increasing the number of neurons by one, and

all the synaptic weights updated. This enhances its learning

capacity. We note that the effect of a signal on the individual

networks could be different. Clearly, the meta-cognitive part

decides what is to be learnt and when.

The choice of the bounds ε1 and ε2 depend on the data.

Determining this a priori is perhaps an open problem. If the

bound ε2 is a large value, meta-cognition has no major role. On

the other hand, if set too low, the complexity of the network

could increase arbitrarily. Thus ε2 is a parameter that provides

a trade-off between network complexity and performance.

Similarly, a high value of ε1 implies that more signals are

not used to train the network, leading to a deterioration in the

performance. In contrast, with a low value there is a possibility

of over-training. Thus, ε1 is a parameter that provides a

trade-off between classification accuracy and generalisation

performance. These bounds are arrived at experimentally.

We now present a technique to determine these bounds

automatically and is adaptive in nature. When the first signal

is shown we determine εa as explained earlier; we refer to this

as εa,1. The bounds ε1 and ε2 are initialised as follows:

ε1,a,1 = 1.1 εa,1, ε2,a,1 = 0.9 εa,1 (11)

Now, suppose that we are showing the pth signal from the

training set. The bounds are then updated as follows:

ε1,a,p = 1.1 min
1≤i≤p

εa,i, ε2,a,p = 0.9 max
1≤i≤p

εa,i (12)

Comments: (i) Evidently, the bounds are chosen automat-
ically, and adapted with every new signal in the training

set. (ii) The coefficients 0.9 and 1.1 have been arrived at

experimentally to maximise the performance. (iii) Note that

initially ε1,a,1 > ε2,a,1, violating the condition mentioned
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Fig. 6. The training phase confusion matrix for the 75:25 rule without meta-
cognition.

earlier. This violation allows exploration similar to that found

in reinforcement learning algorithms. As observed later in

Section V, within a few signals, the inequality is restored.

(iv) Using meta-cognition in the context of pattern recognition

is not new. In [25], the authors consider a radial basis function

network that is trained sequentially. This idea is extended to

a fully complex-valued radial basis function network in [26]

and to an extreme learning machine classifier in [27]. However,

features have to be extracted in order to train and test these

networks. In contrast, we use a recurrent neural network that is

trained and tested directly with the raw signals. Moreover, the

authors in [25]–[27] do not consider bounds that are adapted.

V. RESULTS AND DISCUSSIONS

The goal in this paper is to classify some of the activities of

a human being based on the signals acquired through a mobile

phone. We recall that the activities are dynamic (walking,

climbing up and down the staircase) and static (standing,

sitting and lying down). These are respectively referred to as

classes C1 through C6. We use 856 signals from the database

described in Section II. In this paper we consider both 4-fold

cross-validation and 10-fold cross-validation. In the former

case, we choose randomly 75% of the signals (i.e., 642) for

training and the remaining 214 signals for testing. In what

follows, this is referred to as the 75:25 rule. Similarly, for the

10-fold cross-validation or the 90:10 rule, 90% of the signals

(i.e., 771) are randomly chosen for training, and the remaining

85 signals for testing.

The methodology consists of three FFNNs networks trained

with OSLA. The number of neurons in the hidden layer for

each network is experimentally found to be 120 so that the

overall performance is maximised. Thus, the three networks

are denoted Nx,20:120:6, Ny,20:120:6, and Nz,20:120:6. For the
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Fig. 7. The testing phase confusion matrix for the 75:25 rule without meta-
cognition.

TABLE I
AVERAGE CLASSIFICATIONACCURACIES WITHOUTMETA-COGNITION

FOR THE 75:25 RULE.

Class Training Data Testing Data

C1 91.15 91.14

C2 94.60 92.54

C3 97.27 97.54

C4 85.97 83.29

C5 72.16 71.47

C6 86.43 85.16

Overall 88.27 87.16

75:25 rule without meta-cognition the confusion matrices for

training and testing are respectively shown in Figures 6 and

7. The classification accuracies averaged over 25 trials are

depicted in Table I. The number of signals (and the percentage)

that are correctly classified are the diagonal elements of the

matrices. There are 642 signals used to train the networks.

Of these, 89 (i.e., 13.9%) are correctly classified as C1, 132

(i.e., 20.6%) are correctly classified as C2, and so on. The

classification accuracy is maximised by a careful choice of

the constants α1, α2 and α3 in (2). After several experiments,

we chose α1 = 0.4, α2 = 0.41 and α3 = 0.19. Evidently,
the accelerations along the x and y axes play a significant

role. However, the acceleration along the z axis cannot be

neglected. The off-diagonal elements in the confusion matrices

represent incorrectly classified samples. The worst results are

for C5. A number of subjects sitting down have been classified

as standing with a few classified as lying down. A similar

trend can be observed from Table II using the 90:10 rule. The

75:25 rule averaged over 25 runs resulted in average training
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TABLE II
AVERAGE CLASSIFICATION ACCURACIES WITHOUTMETA-COGNITION

FOR THE 90:10 RULE.

Class Training Data Testing Data

C1 90.10 90.95

C2 94.90 92.78

C3 97.31 97.32

C4 86.88 84.23

C5 72.11 71.10

C6 86.29 88.79

Overall 88.32 87.58

TABLE III
AVERAGE CLASSIFICATIONACCURACIES WITH META-COGNITION FOR

THE 75:25 RULE.

Class Training Data Testing Data

C1 92.38 91.14

C2 94.76 93.04

C3 98.13 98.24

C4 82.13 82.05

C5 77.65 76.16

C6 93.43 92.16

Overall 89.23 88.12

and testing accuracies of 88.27% and 87.16%, respectively.

The corresponding average accuracies with the 90:10 rule are

88.32% and 87.58%. From these metrics we conclude that the

performances of the networks are reasonably consistent.

The achieved accuracy by the proposed method is compara-

ble to those obtained in [6]. We note that an accuracy of 96%

was achieved in [6] with a multi-class support vector machine

after extracting 561 features after pre-processing the signals.

This is in contrast to the methodology in this paper which does

not require pre-processing or feature extraction. The poorer

overall accuracy that is achieved in this paper relative to [6]

is due to the class C5 which consists of subjects sitting down.

This class was confused with those subjects who stood or

lay down. Similar problems were observed in [6] and was

attributed to the data acquisition process. When the subjects

are dynamic (i.e., the subjects are walking or climbing), the

classification accuracies achieved in this paper are 90.95%,

92.78% and 97.32% with the 90:10 rule. The authors in [6]

achieve 96%, 98% and 99% respectively for classes C1, C2

and C3. These results show that the proposed method yields

satisfactory classification accuracies.

The effect of meta-cognition for the 75:25 and 90:10 rules

are given in Tables III and IV. In terms of overall classification

accuracies there is a marginal improvement. A significant

improvement is observed for C5 when meta-cognition is in-

troduced. The 75:25 rule averaged over 25 runs resulted in

average training and testing accuracies of 89.23% and 88.12%,

TABLE IV
AVERAGE CLASSIFICATION ACCURACIES WITH META-COGNITION FOR

THE 90:10 RULE.

Class Training Data Testing Data

C1 91.21 92.10

C2 95.63 93.06

C3 97.70 98.64

C4 87.05 86.75

C5 72.93 74.65

C6 87.43 88.17

Overall 89.54 88.56
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Fig. 8. Comparison of overall classification accuracies: (a) Training dataset.
(b) Testing dataset. (The first and the third bars in each window correspond
to the case when meta-cognition is not used.)

respectively. The corresponding average accuracies with the

90:10 rule are 89.54% and 88.56%. From these metrics we

conclude that the performances of the networks are reasonably

consistent. The averaged classification accuracies for different

scenario with and without meta-cognition are compared in

Fig. 8.

The introduction of meta-cognition reduces the training

time considerably. The total numbers of discarded signals

are 345 and 390 respectively for the 75:25 and 90:10 rules.

That is, respectively 13.3% and 15.0% of the total number

of training signals for the three networks are not used for

training and with a marginal improvement in the classification

accuracy. We recall that to compute the error only forward

pass computations are considered and that the weights are not

updated. Further, it was observed that for the 75:25 rule, the

number of hidden neurons increased from 120 to 124, 128 and

127, respectively for the networks Nx, Ny and Nz . Similarly,

for the 90:10 rule, the corresponding increases were 6, 10 and

1937



TABLE V
TRAINING TIMES.

Learning 75:25 Rule 90:10 Rule

Without Meta-cognition 67.2940 sec. 92.8542 sec.

With Meta-cognition 63.5699 sec. 78.5162 sec.

9. The introduction of meta-cognition also serves the purpose

of reducing the variance in the errors. The variance in the

errors for the network Nx (averaged over 25 trials) without

and with meta-cognition respectively are 0.00217 and 0.00149.

The corresponding variances for Ny are 0.00257 and 0.00232,

and for Nz are 0.00283 and 0.00269. This again shows that

the networks are able to learn better with the introduction of

meta-cognition. For all of these experiments the values of ε1

for each axis is 0.8 and the values of ε2 were 1.3, 1.41 and

1.43 respectively for the x-, y-, and z-axis.

The changes in these bounds when they are adapted in

accordance with the heuristic adaptive rules presented in

Section IV are shown in Fig. 9. Here, the errors εa computed

for each training signal are shown as solid lines for the three

axes. The bounds for each axis ε1,a and ε2,a are also indicated

in these figures. For the first few signals we observe that

ε1,a > ε2,a in accordance with the manner in which they are

initialised forcing the overall process to explore for the proper

values of these bounds. Subsequently, ε1,a < ε2,a.

When these bounds are adapted the numbers of signals

discarded were 312 and 336. That is fewer signals were

discarded and hence a marginal increase in the training time

when compared to the scenario wherein the bounds are fixed

a priori. The changes in the classification accuracies are

marginal. For the 4-fold cross-validation rule, the training and

testing average accuracies averaged over 25 trials respectively

are 89.74% and 88.28%. The corresponding accuracies for

the 10-fold cross-validation rule are 89.54% and 88.56%. The

largest increase in the neurons is seven along the y-axis for

the 4-fold cross-validation. (These are summarised in Fig. 8.)

Thus, when the bounds are initialised and adapted there is

no significant change the performance. The main advantage is

that there is no requirement of choosing these bounds a priori.

Comments: (i) The training times are as shown in Table V.
(All simulations are performed on a MacBook Pro with an

Intel I5 processor and 4 GB RAM.) We recall that the numbers

of signals for the 75:25 and 90:10 rules respectively are 642

and 771 signals. Obviously, the latter rule takes significantly

more time than the former rule. More importantly, meta-

cognition reduces the number of signals that are used for

training, and hence considerably reduces the training time.

(ii) Attempts were made to use back propagation algorithm

to train the networks in a manner similar to the philosophy

adopted here: without pre-processing of signals and feature

extraction, and to train sequentially. Networks with one and

two hidden layers were used. However, the classification

accuracy was significantly poorer than the one achieved here.
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Fig. 9. The errors ε along x- and y- and z-axes as a function of the signal
number shown as solid lines. The varying bounds ε1 and ε2 along each axis
respectively shown as dash-dot and broken lines.

Accordingly, no statistical comparison of methods with the

same underlying training philosophy was made.

VI. CONCLUSIONS

A methodology for recognising human activities was pro-

posed in this paper. It requires no pre-processing of signals

and feature extraction. An ensemble of three feedforward

neural networks is used to classify the human activities. The

classification accuracies achieved are comparable to other

techniques that rely on feature extraction. The introduction

of meta-cognition reduces the training time considerably with

a slight improvement in the overall classification accuracy.

The bounds required for meta-cognition can be made adaptive

with only marginal changes in the performance. The proposed

methodology is closer to the human cognitive process. The

algorithm for supervised training is the online sequential

learning algorithm. Work is in progress to statistically compare

the proposed methodology with multiple datasets and other

algorithms.
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