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Abstract— The illegal practice of dynamite fishing upsets the 
balance of an ecosystem and can endanger human lives as well. 
Detection and localization of such activity is necessary from 
several viewpoints. A methodology for detection and localization 
of such dynamite blasts is presented in this paper. The sound 
signals are recorded using an array of sensors, filtered, and 
classified using an artificial neural network. The location of the 
sound-source is also simultaneously determined using these 
measured signals.  
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I.  INTRODUCTION  
Dynamite fishing is an illegal practice of killing a school of 
fish by blasting dynamites, which still remains widespread in 
countries like Indonesia, Philippines and Tanzania. It is also 
well documented in few other Southeast Asian countries, as 
well as in the Aegean Sea, and coastal Africa. This practice 
has also been spotted along the riverside of the river Kaveri in 
Karnataka, India. Homemade bombs that contain a mixture of 
powdered potassium nitrate and pebbles, or ammonium nitrate 
and kerosene, are employed to stun the fish for easy collection. 
The swim bladders of fish rupture creating a loss of buoyancy 
and make the fish float on the surface. In addition to the effect 
on fish, a large number of underwater organisms are killed 
ruthlessly by the use of these explosives. Moreover, coral reefs 
are damaged due to these explosions. Further, the explosions 
have been known to harm the physical ecosystem and the 
person using them as well. A methodology to detect and 
localize dynamite fishing is therefore necessary and important. 
However, there appears to be no prior work reported in the 
literature.  

On the contrary, several researchers have dealt with 
impulsive sounds that are characterized by the sudden 
presence of a pressure wave. Examples include gunshots, 
thunder and screams. The approaches to detect such impulsive 
sounds are quite varied. For example, a correlator compares 
the autocorrelation against a threshold in [1] for the detection 
of gunshots. Six detection algorithms for gunshots are 
evaluated in [2]. It was suggested that a wavelet filter banks 
provides the best trade-off between detection efficiency and 
power requirements in a VLSI implementation. A combination 
of absolute threshold detector together with two exponentially 
weighted moving average detectors triggers local detection at 

a node of a wireless sensor network in [3]. A final voting 
process amongst a group of nodes is then used to detect 
volcanic eruptions. The variations of the sound energy are 
used as a measure to detect impulsive sounds in [4]. In 
contrast to these, the extracted features are used for both 
detection and classification in [5].  

Once an impulsive sound has been detected, researchers 
have approached classification using a variety of tools.  These 
include Hidden Markov Model (HMM) [1,4], Artificial Neural 
Networks (ANNs) [4], Gaussian mixture model (GMM) [4,5]. 
These classifiers require features to be extracted.  Both 
temporal features such as correlation as well as perceptual 
features such as mel-frequency cepstral coefficients (MFCC) 
were utilized in [1]. A combination of Linear Predictive 
Coding (LPC), cepstral and MFCC coefficients are considered 
in [4]. A total of 49 features are initially considered in [4], and 
comprise temporal, spectral, perceptual, and correlation-based.  
Subsequently, the number of features is reduced by a 
procedure that involves both open-loop metrics and metrics 
that allow feedback from the classifier.  A number of temporal 
and spectral features extracted from electromyography signals 
are described in [6].  

The difference in the time of arrival of the signal at the 
sensors is used to localize the source in [5]. Here, the array of 
four sensors is T-shaped with the center microphone taken as 
the reference.  The maximum likelihood generalized cross 
correlation method is used to estimate the time delays. In turn, 
this requires the computation of the minimum variance 
distortionless response spectra. Subsequently, the source is 
localized by solving a least-squares problem. Triangulation is 
a well-established technique for localization. For example, it is 
used to determine the location using a GPS receiver [8]. It is 
also used to track the location of a mobile phone using the 
signal strength to nearby antenna towers [9]. Triangulation is 
based on estimates of quantities such as time of arrival, time 
difference of arrival, or angle of arrival. (See, for example, 
[9]-[11].) In contrast, the Received Signal Strength Indicator 
(RSSI) is a measure of the strength of the signal received by a 
sensor from a source and can be indicative of the distance 
between the two. This measure has been used by several 
researchers. For example, this was used in [12] to determine 
the location of a mobile node in a wireless sensor network and 
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applied to robot navigation in [13]. Here, an empirical 
formulation is done to obtain a relationship between received 
signal strength and distance.  

Evidently, there appears to be no paper that suggests a 
technique for the detection and localization of dynamite blasts. 
In this paper, we propose a deployable system that can detect 
and localize a dynamite blast. The novel methodology 
incorporates pre-processing of signals, followed by feature 
extraction and classification using a trained artificial neural 
network for detection, and localization carried out using the 
measure RSSI. This is described in Section II, and the results 
presented in Section III.   

II. THE METHODOLOGY 
The proposed methodology is depicted in Figures 1 and 2, and 
respectively describes detection and localization. The 
continuous-time sound signal )(tx  is recorded using a 
microphone and sampled at 8 kHz. The power spectrum of the 
resulting discrete-time signal )(nx  is analyzed and a band-
pass filter )(zH (with impulse response )(nh ) is designed to 
filter out the noise. The features of the filtered output )(ny  
are then extracted.  
 

Three sets of features are considered here; these include 
parameters related to the statistics of the signal, those that are 
related to the spectrum of the signal, and those that are related 
to the compressed form of the spectral envelope of the signal. 
(The latter is obtained by using the tool linear predictive 
coding (LPC).) A trained artificial neural network is then used 
to classify whether or not the recorded signal had resulted 
from a dynamite blast.  
 

 
 

Fig. 1. Design flow of the proposed method: Detection.  

 

Triangulation technique is incorporated to localize the 
blast. An arbitrary point is to be the source of the blast signal. 
The distance of the source from each vertex of the triangle is 
calculated using the received strength of the signal obtained at 
each vertex. (In this paper, we use the Received Signal 

Strength Indicator (RSSI) as a measure.) A unique solution to 
three equations of the circles formed with nodes as centers and 
distances between nodes and the point of blast as radii gives 
the coordinates of source of the blast. 

In what follows, we describe the different steps involved:  

A. Pre-Processing 
For purposes of testing the methodology, sound signals from 
databases ([14] and [15]) are used. These databases include 
signals resulting from explosion of bombs and dynamites, 
thunder and gunshots. Whilst the former are referred to as 
“blast” signals in the sequel, the latter are referred to as “non-
blast” signals. The database consists of 34 signals with 17 
blast and 17 non-blast signals.   

The sound signals from the database are sampled at 8 kHz 
and their spectrum estimated using the periodogram method. 
From the spectrum, it is observed that the frequency 
components of the signal lie in the range from 50 Hz to 450 
Hz. Accordingly, a suitable band-pass filter is used to extract 
the signal. In this paper, an FIR filter with 566 coefficients is 
designed using a Hamming window.  

 

 

Fig. 2. Design flow of the proposed method: Localization. 

 

B. Relevant Features 
The redundancy within a large number of samples of a signal 
is removed by extracting those features that retain the relevant 
information. The dimension is then naturally smaller and the 
resulting feature vector is easier to use for pattern 
classification compared to the actual signal.  The choice of the 
relevant features depends on the application. A number of 
features can be extracted (see, e.g., [6]). For the purpose of 
classification of sound signals within the context of detection 
of dynamite blasts, the following features have been 
experimentally found to be relevant: These include statistical 
parameters like the average value, the variance and the related 
standard deviation, and the root mean square value. Other 
parameters include the average change of amplitude, the mean 
frequency, the peak frequency, the total power, and the mean 
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and median powers. These ten features are summarized in 
Table 1. The last five parameters are computed using the 
power jP at the jth frequency bin jf . 
 

In addition to these features, we also use Linear Predictive 
Coding (LPC) coefficients. LPC is a tool used primarily in 
audio and speech processing for representing the spectral 
envelope of the signal in compressed form, in the form of 
a linear predictive model. In this paper, 50 LPC coefficients 
are considered. These are computed using the Levinson 
method [7]. Therefore, in this paper, the feature vector consists 
of 60 elements. 

 
 

Tab. 1. Some extracted features.  
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C. The Neural Network for Pattern Classification  
Pattern classification can be achieved using several 
approaches (see, for example, [17]). Although statistical 
methods such as Bayesian Decision Theory can be used, it has 
been our experience that Artificial Neural Networks (ANNs) 
are powerful tools that are easier to use. The principal reason 
for this is that ANNs are universal approximators in that a 
sufficiently smooth function can be approximated to any a 
priori specified accuracy by a three-layered feedforward 
neural network which has a sufficient number of neurons in 
the hidden layer. In the case of pattern classification, the 
separation of the classes (i.e., the discriminant function) is 
approximated well by the artificial neural network.  

We consider a feedforward neural network that is trained 
in a supervised manner using the standard back propagation 
algorithm. The chosen network consists of one hidden layer. 
The input layer has 60 nodes corresponding to the number of 
elements of the feature vector, and the output consists of 2 
neurons, as there are two classes of patterns – blast signals and 
non-blast signals. The hidden layer consists of 100 neurons. 
The hidden layer is a nonlinear layer with the sigmoidal 
activation function (1), and the output layer is also nonlinear 
with the softmax activation function (2).   

1001),tanh()(,1 ≤≤= kvv kkkϕ  (1) 

21,)(
21,2 ≤≤

+
= l

ee
ev vv

v

ll

l

ϕ  (2) 

The softmax function is clearly a normalized exponential 
function, and it generalizes the logistic function. The resultant 
outputs lie in the interval [0,1], and they add to one. Therefore, 
they represent a categorical probability distribution. 
Accordingly, softmax classifiers are more suitable compared 
to binary classifiers when the classes are mutually exclusive.  
 

D. Localization   
Localization is a process of reporting the origin of events, and 
determines either the physical position or the logical location. 
The main objective of localization is to determine the location 
of an unknown node, or an event, as accurately as possible 
from the information obtained from a set of nodes whose 
locations are predefined. In this paper, we use the Received 
Signal Strength Indicator (RSSI) as a parameter to determine 
the distance between the sensor nodes and the point of blast.  

The RSSI is based on the fact that the signal strength is 
inversely proportional to the squared distance between the 
transmitting node and the receiving node. A known radio 
propagation model is used to convert the received signal 
strength into distance. Either empirical or theoretical models 
are used to translate signal strength into distance.  

In the proposed methodology, the sensors that are used to 
record the sound signal are the nodes. For the purpose of this 
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paper, we assume that these nodes are placed along lines 
parallel to each other and separated from each other by an a 
priori known fixed distance. The arrangement is shown in Fig. 
3. Accordingly, the point of blast is inside a triangle with 
vertices formed by three sensors, with one sensor from one 
line of nodes, and two sensors from the other line.  The 
described scenario is shown in Fig. 2. 

Several methods can be used to determine the relationship 
between the power of the signal and the geographical distance. 
Two methods considered here are nonlinear regression 
analysis and an artificial neural network. Using the developed 
relationship, the coordinates of the blast can be determined by 
solving three circle equations. These circles are drawn with the 
nodes as centers and the distances between the nodes and the 
point of blast as radii. Such a triangulation process is shown in 
Fig. 2.   

 

Fig. 3. Scenario for Localization 

 

III. RESULTS AND DISCUSSIONS 
 
The signals used in this paper are from the databases 
mentioned earlier. We first describe the training of the 
network using these signals. It may be recalled that, of the 34 
available signals, 17 are blast signals and the remaining 17 are 
non-blast signals. Of these, 28 sound signals are used to train 
the network using the back-propagation algorithm, 10% of the 
signals (i.e., 3 signals) are used to test the trained network, and 
the remaining 10% used to validate the network. We use a 
network with 60 input nodes, 100 neurons in the hidden layer, 
and 2 neurons in the output layer. The activation functions for 
the hidden and output layers are respectively given in (1) and 
(2). The training, testing and validation accuracies are depicted 
as the confusion matrix in Fig. 4. Here, three matrices provide 
mismatch, false-positives, the accuracies of training, testing 
and validation and the fourth matrix provides the mismatch, 
false-positives and the accuracy of the trained neural network.  
 
Comments: (i) If only the parameters depicted in Table 1 are 
considered for training, then the achieved classification 
accuracy is only 88%. On the contrary, if only LPC 
coefficients are used then the accuracy is 94%. This shows 

that both sets of parameters are required to maximize the 
accuracy. As mentioned earlier, the combination of these 
parameters is essential to yield 100% classification accuracy. 
(ii) One may argue that since variance and standard deviation 
are related, the features may contain redundancy. Whilst this is 
true in that using only either of the feature yields 100% 
classification accuracy, we use both for the following purpose: 
The match between the desired output and the actual output is 
near perfect when both the parameters are used thereby 
making the use of a hard-limit function redundant.   

 

Fig. 4. Confusion matrix for the trained neural network. 

The experiments in the laboratory are conducted as 
follows: One of the signals corresponding to blast is played, 
and the resulting signals recorded using a Cyanogen OnePlus 
cellular phone instrument. This instrument has three in-built 
microphones for better noise cancellation and audio 
enhancement. The end result is a single recorded signal. The 
simulated blast is recorded at spatial intervals of 50 cms.  

 
The time-domain and the frequency-domain plots of the 

measured signals are respectively shown in Fig. 5 (a) and (c), 
and of the filtered signals respectively in Fig. 5 (b) and (d). It 
may be recalled that the filter is band-pass and is based on a 
Hamming window. It can be observed from this figure that the 
noise in the measured signal is effectively removed.  The 
filtered signal characterized by its feature vector is then 
presented to the trained network, which correctly classifies it 
as a blast signal.  

 
In order to localize the blast, we first obtain the distance 

versus power plot; this is shown in Fig. 6. The measured data 
is shown as circles in the figure. A curve is fit to the measured 
data using nonlinear regression analysis; the resulting curve is 
shown as a solid line in Fig. 6. The resulting nonlinear 
function is given in (3).  

 
pp eepd 581.446.52 66.147.12)( −− +=  (3) 

 

4



Using this relationship, the three circles are drawn using 
equations (4), and the location of the blast is determined. The 
accuracy of localization is found to be 94%. 
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Fig. 5. Blast signal: (a) Time-domain plot of the raw signal, (b) time-domain 

plot of the filtered signal, (c) frequency-domain plot of the raw signal, 
and, (d) frequency-domain plot of the filtered signal.  

 

 
 

Fig. 6. Curve fitting using non-linear regression analysis 

It is possible to exploit the function approximation 
property of an artificial neural network to obtain the 
relationship between power and distance. The advantages of 
using a network are that it can learn the patterns in a given 
data, and fit a curve. It has been our experience that for the 
data depicted in Fig. 6, the localization accuracy obtained 
using a neural network is comparable to the results obtained 
using nonlinear regression analysis. However, neural networks 
have an additional advantage in that it can handle larger 

number of data samples as opposed to regression analysis. The 
resulting localization accuracy improves with a larger number 
of measurements.  

IV. CONCLUSIONS 
In this paper we developed a methodology for detection and 
localization of dynamite blast fishing. The achieved accuracy 
of pattern classification is 100% by the particular choice of the 
feature vector. The detection included statistical parameters; 
parameters derived from the power spectrum of the signal, and 
LPC coefficients. The location of the dynamite blast is 
determined using triangulation with RSSI as a measure, and 
nonlinear regression analysis of the measured data. The 
location prediction accuracy achieved is 94%.  Work is 
currently in progress for real-time deployment in field trials. 
Towards this, the developed methodology has been 
successfully implemented on Intel Galileo Gen 2.  

 

ACKNOWLEDGMENT 
We thank Sesha Raghav, Department of DESE, IISc 
Bangalore, for providing us with invaluable and constructive 
suggestions.  

 

REFERENCES 
[1] I. L. Freire and J. A. Apolinário Jr., “Gunshot detection in noisy 

environment,” in Proceeding of 7th International Telecommunications 
Symposium (ITS2010), Manaus, Brazil, 2010.   

[2] A. C. Rodríguez, L. Castro, P. Alvarad, P. Juliá and N. Hernánde, 
“Evaluation of gunshot detection algorithms”, IEEE Transactions on 
Circuits and Systems — I, vol. 58, no. 2, pp. 363-373, February 2011.   

[3] G. Warner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, 
“Monitoring volcanic eruptions with a wireless sensor network,” in 
Proceedings of the Second European Workshop on Wireless Sensor 
Networks (EWSN’05), Istanbul, Turkey, January-February 2005, pp.108-
120. 

[4] M. A. Dufaux, “Detection and Recognition of Impulsive Sound 
Signals,” Ph.D. Thesis, Institut de Microtechnique, Universite de 
Neuchatel,  Switzerland, 2001. 

[5] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci and A. Sarti,  
“Scream and gunshot detection and localization for audio-surveillance 
systems,” in Proceedings of the IEEE Conference on Advanced Video 
and Signal Based Surveillance (AVSS 2007), London, UK, September 
2007, pp. 21-26.  

[6] A. Phinyomark, A. Nuidod, P. Phukpattaranont, C. Limsakul, “Feature 
extraction and reduction of wavelet transform coefficients for EMG 
pattern classification,” Elektronika ir Electrotechnika, vol. 122, no. 6, 
2012, pp. 27-32.  

[7] N. S. Behbahan, S. Azari and H. Bahadori, “An introduction to the 
features extracted from the audio signal,” International Journal of 
Advanced Research in IT and Engineering, vol. 2, no. 8, August 2013, 
pp. 39-46.   

[8] A. El-Rabbany, Introduction to GPS: The Global Positioning System, 
Norwood, MA, USA: Artech House, 2002. 

[9] M. Pourhomayoun and M. Fowler, “Improving WLAN-based indoor 
mobile positioning using sparsity,” Forty Sixth Asilomar Conference on 
Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, 
USA, November 2012, pp. 1393-1396. 

[10] S. R. Leelavathy and S. Sophia, “Providing localization using 
triangulation method in wireless sensor networks,”  International 
Journal of Innovative Technology and Exploring Engineering (IJITEE) 
vol. 1, no. 6, November 2014.  

5



[11] A. Varshavsky, M.Y. Chen, E. de Lara, J. Froehlich, D. Haehnel, J. 
Hightower, A. LaMarca, F. Potter, T. Sohn, K. Tang, and I. Smith, “Are 
GSM phones THE solution for localization?” Seventh IEEE Workshop 
on Mobile Computing Sysetms and Applications (WMCSA’06), Orcas 
Island, WA, USA, August 2005, pp. 34-42.  

[12] N. Zhou, X. Zhao and M. Tan, “Deployment and routing method for fast 
localization based on RSSI in hierarchical wireless sensor network,” in 
Proceedings of the IEEE 10th International Conference on Mobile Ad-
Hoc and Sensor Systems (MASS), Hangzhou, China, October 2013, pp. 
614-619.  

[13] N. Zhou, X. Zhao and M. Tan, “RSSI-based mobile robot navigation in 
grid-pattern wireless sensor network,” in Proceedings of the Chinese 
Automation Congress (CAC), Changsa, China, November 2013, pp. 497-
501.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[14] Sound database  
http://soundbible.com/ 

[15] Sound database  
https://www.audioblocks.com 

[16] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, 2nd ed., New 
York, NY, USA: John Wiley & Sons, 2001.  

[17] S. Haykin, Neural Networks – A Comprehensive Foundation, 2nd ed., 
Englewood Cliffs, New Jersey, USA: Pearson Education, 2002.  

6


