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Abstract— Block matching techniques have been studied
exhaustively for motion estimation in Ultrasound (US) images.
Exhaustive Search (ES) is the most commonly used search
algorithm for block matching in US images. However, ES
can be computationally expensive and slow. In this paper,
a faster search algorithm called the Adaptive Rood Pattern
Search (ARPS) is adopted to US images along with sub-
pixel matching to reduce the computational cost and enhance
block matching. Both ES and ARPS were applied in the
context of block matching based 2D speckle tracking and were
compared using Number of Computations per Frame (NCF),
Computational Time per Frame (CTF) and Root Mean Squared
Error (RMSE) as metrics. Our simulations and experimental
results proved that ARPS outperformed ES by a substantial
margin. Adaptation of this technique could help improve the
performance of real-time motion estimation drastically.

I. INTRODUCTION

Speckle tracking has wide range of applications in diag-
nostic ultrasound, such as elasticity imaging [1], elastography
[2], and echocaridography [3]. Speckles, in US images, are
formed by the combination of constructive and destructive
interference of echoes from scatterers in the observed tissue
and can be used for motion tracking [4]. One of the most
commonly used algorithms for speckle tracking in US images
is block matching [5]. In any typical block matching based
tracking, a reference block (window/kernel) is defined in
the first frame and is tracked in the subsequent frames.
Any block in the subsequent frame that is subject to search
is called the candidate block. The similarity between the
reference block and the candidate block is quantified by
defining a cost function, using which the best match is
obtained. Different applications of block matching include
tracking of carotid artery wall motion [6], shear strain and
motion amplitude within the arterial wall [7] and study of
motion dynamics of carotid atheromatous plaque [8].

Based on the block matching technique, several adaptive
algorithms have been developed to improve motion tracking.
Gastounioti et al [9] proposed an adaptive block matching
algorithm using a linear Kalman filter. To further enhance
motion tracking, Zahnd et al [10] proposed a methodology,
which involved temporal update of the reference block using
pixel-wise linear Kalman filter. In a very recent study, a
non-linear state space approach was proposed by Gao et
al [11], where unscented kalman filter with a non-linear
model was used to estimate the motion of the carotid artery.
Although, all the above-mentioned techniques promise robust
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Fig. 1. (a) represents diamond Search for location (2, 4) using LDSP and
SDSP. (b) represents the rood pattern distributed points of ARPS.

and precise tracking, finding a best match in the subsequent
frames is still expensive due to ES. ES attempts to find the
best match by scanning all possible candidate blocks within
a pre-defined search region, thus making it computationally
expensive.

Besides ES, few other well-known faster algorithms are
new three-step search (NTSS), four-step search(4SS), and
diamond search (DS). Although these algorithms are efficient
and simple, they lack adaptability. In this paper, we propose
to adopt ARPS along with sub-pixel accurate matching.
ARPS, an adaptive search algorithm proposed by Nie et al
[12], is used to find the best candidate match in any given
frame. Making use of the fact that the general motion in
a frame is coherent, ARPS exploits the adjustable rood-
shaped patterns adaptively. This reduces the computational
cost drastically. To further enhance block matching, sub-pixel
accurate matching is performed post ARPS matching by
interpolating the matched blocked. We also employ a simple
linear Kalman filter to mimic the conventional tracking
models [9] used in US images.

II. MATERIALS AND METHODS

A. Basic Principles of Adaptive Rood Pattern Search

ARPS relies on the fact that neither large search patterns
(window/kernel size) nor small search patterns alone can
efficiently estimate the motion vectors [12]. While the small
search patterns are useful in detecting small motions, they
tend to get stuck in local minimum. On the other hand,
large search patterns contain sparsely spaced search points
and incur unnecessary search for small motion vectors.
Therefore, ARPS exploits the use of both large and small
search patterns. It makes use of the fact that, if a given frame
has a particular set of motion vectors, then it is highly likely
that the subsequent frame also has a similar set of motion
vectors.



Fig. 2. Pipeline of block matching

ARPS has two diamond search patterns − Large Diamond
Search Pattern (LDSP) and Small Diamond Search Pattern
(SDSP)− much like the conventional diamond search. This
is represented in Fig. 1a with an example of path to the
motion vector (2, 4). In this example, ARPS uses four
LDSP and one SDSP (it should be noted that the center of
the reference block is considered (0, 0)). But, as opposed
to diamond search, ARPS is adaptive in that it uses the
predicted motion vector from the previous frame to check
for the candidate block. In addition, it also searches at rood
pattern distributed points as represented in Fig. 1b. ARPS
first performs an LDSP and when a best match is obtained,
it performs a fine tuning using SDSP. Once the SDSP selects
the best candidate block, sub-pixel matching is performed
by interpolating the candidate block. Fig. 2 represents the
pipeline of the proposed block matching technique.

B. Kalman Filter

A simple linear Kalman filter is used to update the
reference block. Prediction of the reference block is ob-
tained from a pre-defined motion model. The best-matched
candidate block obtained from the preceding frame is used
as measurement. The state and measurement equations are
given by

xk = Fxk−1 +Buk + nk (1)

zk = Hxk−1 + vk (2)

where xk is the current state at time k, F is the state transi-
tion model, B is the control matrix, u is the control vector,
H represents the measurement (or observation) model, n and
v are the process and measurement noise respectively. Two
phases of the Kalman filter are the prediction and update
phases. Priori state estimate (x̂−

k ) and priori state covariance
estimate (P−

k ) are calculated in the prediction phase using
equations 3 and 4

x̂−
k = Fx̂k−1 +Buk−1 (3)

P−
k = FPk−1F

T +Q (4)

where, Q represents the process covariance matrix. In the
update phase, Kalman gain (K) is calculated to appropriately

weight the error between observation and prediction using
equation 5. Using Kalman gain and the available new mea-
surement, the posterior estimate of the state x̂k is obtained
using equation 6. Finally, posterior estimate of the state
covariance Pk is updated using equation 7.

K = P−
k HT (HP−

k HT + C)−1 (5)

x̂k = x̂−
k +K(zk −Hx̂−

k ) (6)

Pk = (I −KH)P−
k (7)

where, C in equation 5 represents the measurement co-
variance matrix. Since we do not consider any tissue-type
in particular, we designed a generic simple linear Kalman
filter to update the reference block. The pixel coordinates
are governed by the kinematic equation of a free moving
object. Displacement (x and y) and velocities (ẋ and ẏ) of
the pixels in lateral and axial directions are considered to
be the states of the system and are together represented by
xk = [x, y, ẋ, ẏ]T . Displacement S is governed by equation
8 and velocity v is governed by equation 9.

S = ut+
1

2
at2 (8)

v = u+ at (9)

where, u represents the initial velocity, t represents time and
a represents acceleration. The process covariance matix Q is
modeled as

Q =


dt2

4 0 dt3

2 0

0 dt2

4 0 dt3

2
dt3

2 0 dt2 0

0 dt3

2 0 dt2


The measurement covariance matrix C is considered to be

an identity matrix multiplied by a constant term (C = cI).
For our experiments, dt = 0.5, a = 0.004m/s2 (arbitrarily
low chosen values to mimick tissue movement) and for
simplicity we set c = 1.

III. EXPERIMENTS

Fig. 3 represents the schematic of our experiment.
ARPS and ES were applied to six different carotid artery
datasets (including cross-section and longitudinal-section
view). Among the six datasets, one of them (referred to
as CA1 dataset) was a B-mode image sequence of the
perpendicular cuts of the carotid artery (cross-section view)
obtained from [13], [14], [15]. The ground truth of the
arterial movement for this dataset was known a priori. Fig.
4a represents one of the frames of CA1 dataset along with
the region of interest (ROI). The red circle in the image
represents the location of the blood vessel. This ROI was
tracked within a search window defined by the parameter p,
which is shown in Fig. 4b. For CA1 dataset, whole blood



Fig. 3. Schematic of our proposed approach. Input ROIs are tracked using ARPS and ES with sub-pixel accurate matching.

vessel was tracked using the two search algorithms and was
compared against the ground truth.

For CA1 dataset, the ROI available from the ground truth
for the first frame was given as input to ARPS and ES
and was tracked in the subsequent frames. The best match
from the subsequent frames were obtained by performing
similarity matching using normalized cross-correlation. Fur-
ther, sub-pixel accurate matching was performed using cubic
interpolation. After tracking through all the frames of the
image sequence, the centroid locations of the tracked ROIs
were compared against the centroid locations of the ground
truth ROIs. For each frame, NCF and CTF were calculated.
NCF is defined as the number of times the cost function
is calculated for a given frame and CTF is defined as the
total time taken by the block matching algorithm to process
an entire frame. Once the entire sequence of images was
processed, average NCF and CTF were compared between
the two search algorithms. Finally, RMSE between centroids
of the search algorithm and centroids of the ground truth
were compared.

Rest of the five datasets (referred to as CA2 through
CA6) were acquired using a Sonix RP (Ultrasonix, Canada)
ultrasound scanner for high frame-rate data collection [16],
[17] (the experimental procedures involved in collecting the
data sets used in this paper are the same as [16], [17] and
were approved by University of Minnesota. Please check
the Acknowledgments section.) A linear array probe (LA14-
5/38) with a center frequency of 7.5 MHz was used to acquire
the data. Among the five datasets, two datasets (CA2 and
CA3) were cross-section view, and the other three datasets
(CA4, CA5 and CA6) were longitudinal-section view of
the carotid artery. In each of the datasets, multiple ROIs
containing intima-media complex and lumen are considered
for tracking. Fig. 5a and 5b represent sample frames from
datasets CA2 (cross-section view) and CA4 (longitudinal-
section view), respectively, with the considered ROIs for
tracking. It should be noted that all the image units are in
pixels instead of mm (this helps to compare other figures
and metrics such as centroid locations and RMSE introduced

(a) (b)

Fig. 4. (a) Sample frame from the CA1 dataset. The red circle represents
the blood vessel and the yellow box represents the ROI. (b) represents the
search region within which the algorithm operates to find the best match.

(a) (b)

Fig. 5. (a) represents a sample frame of CA2 dataset (cross-sectional view)
and (b) represents a sample frame of CA4 dataset (longitudinal view) with
chosen ROIs to be tracked. The red circle in (a) represents the circumference
of the carotid artery.

in subsequent sections). NCF and CTF were compared
between the two search algorithms. Since the ground truth
for these datasets were unavailable, the RMSE of centroids
is calculated between ARPS and ES. This metric signifies
how close the two algorithms are to each other when the
same ROI is tracked.

IV. RESULTS AND DISCUSSION

A. ARPS and ES on CA1 dataset

For the experiments on CA1 dataset, a search region with
p = 20 pixels was defined for both ARPS and ES. Images
were of the size (322 × 288) pixels. Due to the exhaustive



TABLE I
AVERAGE NCF AND CTF VALUES FOR CA1 DATASET.

Average NCF Average CTF
ES 1681 650ms

ARPS 5.67 10ms

(a) NCF (b) CTF

Fig. 6. NCF and CTF of ARPS for CA1 dataset.

search strategy, NCF and CTF for ES are exactly the same
for every frame. On the contrary, NCF and CTF reduce
drastically when ARPS is used. Fig. 6a and 6b represent NCF
and CTF for ARPS. Average NCF and CTF were calculated
for both ARPS and ES and are summarized in Table 1.

The ROIs tracked by both algorithms were compared
against the available ground truth. Fig. 7a and 7b represent
the centroid locations of the ground truth, ARPS and ES in
the axial and lateral directions, repectively. The RMSE for ES
and ARPS with respect to the ground truth are summarized
in Table 2. It can be seen that ARPS applied with sub-pixel
accurate matching substantially decreases the error.

B. ARPS and ES on Datasets CA2 through CA6

Similar to above-mentioned experiments, both ARPS and
ES were applied on datasets CA2 through CA6. Multiple
ROIs from the same frame were selected in order to check
the robustness of ARPS against ES and also to examine the
movement of different locations axially and laterally of the
same blood vessel. For instance, six regions were selected
in CA4 dataset image as shown in Fig. 5b. Three regions
along the upper wall and three regions along the lower wall
of the carotid artery. These ROIs contained both intima-
media complex and the lumen. Images in this sequence were
(1296 × 152) pixels in size. Selected regions were tracked
over all 271 frames using both ARPS and ES. Fig. 8a
represents the axial displacement trajectory obtained using
ARPS and ES. A similar output for CA2 (cross-section view)
dataset is also represented in Fig. 8b (graphs for lateral
displacement trajectory are not shown due to negligible
lateral movement). It is clear that both algorithms follow
similar trends with extremely negligible error. For the CA4
dataset, NCF and CTF averaged over all the bounding boxes
for both algorithms are summarized in Table 3. Since no
ground truth data was available for these images, the RMSE
of the centroids tracked by ARPS and ES were compared
against each other. RMSE between ARPS and ES averaged

(a) Axial direction (b) Lateral direction

Fig. 7. Centroid locations of the ground truth, ARPS and ES through all
the frames of the CA1 dataset for axial and lateral directions.

TABLE II
RMSE VALUES IN PIXELS FOR ES AND ARPS WITH RESPECT TO THE

GROUND TRUTH ON CA1 DATASET.

RMSE ES ARPS with subpixel ARPS w/o subpixel
Axial 2.37 2.76 2.95

Lateral 2.39 2.32 5.24

for all six bounding boxes was found to be 0.0157 pixels in
the axial direction and 0.0027 pixels in the lateral direction.
NCF and CTF for CA2 dataset is represented in Table 4.
RMSE between ARPS and ES for CA2 dataset was found
to be 0.0774 pixels in the axial direction and 0.0239 pixels
in the lateral direction. Similar experiments were carried out
for all the remaining four datasets. Due to limited space,
outputs of all datasets are not shown. However, NCF and
CTF calculated for ES and ARPS averaged over all datasets
is shown in Table 5. The averaged RMSE of displacement
between ARPS and ES over all datasets was found to be
0.061 pixels along the axial direction and 0.023 pixels along
the lateral direction. ARPS was ∼221 times faster than ES
in terms of NCF, and ∼72 times faster in terms of CTF.
Therefore, evidently, ARPS outperforms ES with only a
marginal trade-off for accuracy.

From the established results, it is easy to see that ES can be
computationally very expensive. The intrinsic characteristic
of ES is the brute-force search. A search region with p
pixels will take (2p + 1)2 number of computations. There-
fore, the computations increase as a function of a second
order polynomial (O(p2)). This can drastically reduce the
computational time of the tracking algorithm. On the other
hand, ARPS does only a constant number of computations
(O(1)). In order to substantiate the claim, the search re-
gion was modelled as a function of the user input ROI
(p = max(ROI height,ROI width)/2). When an ROI of
size (200 × 50) pixels was chosen, the NCF of ES was
∼ 4× 104 and that of ARPS was still 6.9. This proves that
ARPS is not computationally expensive even with very high
resolution images. This ensures that ARPS can be used to
track motion in real-time on portable devices. The above-
mentioned results were obtained by running the code on
MATLAB 2018 (The MathWorks, Natick, Massachusetts,
USA), on a MacBook Air with 1.8GHz dual-Core Intel Core
i5 processor and 8GB RAM.



(a) CA4 dataset (b) CA2 dataset

Fig. 8. Axial displacement trajectory for CA2 and CA4 dataset.

TABLE III
NCF AND CTF VALUES AVERAGED FOR SIX ROIS IN CA4 DATASET.

Average NCF Average CTF
ES 1330.12 408.6ms

ARPS 6.88 7.23ms

An inherent limitation of ARPS is that it only searches
at certain given points within the pre-defined search region.
It can be seen from Fig. 8 that ES has a better frame-to-
frame resolution compared to ARPS. But it is evident from
the above-mentioned results that this limitation is negligible
considering the advantages of using ARPS.

V. CONCLUSION AND FUTURE WORK

The performance of ARPS and ES were tested on six
different carotid artery datasets. In all the cases, ARPS
outperformed ES in terms of computations by a substantial
margin. ARPS was three order of magnitude less than ES in
terms of NCF and two orders of magnitude less than ES in
terms of CTF with only a marginal depreciation in RMSE.
This indicates that the usage of ARPS as a search technique
within the block matching paradigm can help improve the
performance of real-time motion estimation in very high
resolution images.
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Závodná, “Novel method for localization of common carotid artery
transverse section in ultrasound images using modified viola-jones
detector,” Ultrasound in medicine & biology, vol. 39, no. 10, pp.
1887–1902, 2013.

[16] Yayun Wan, Dalong Liu, and Emad S Ebbini, “Simultaneous imaging
of tissue motion and flow velocity using 2d phase-coupled speckle
tracking,” in 2010 IEEE International Ultrasonics Symposium. IEEE,
2010, pp. 487–490.

[17] Yayun Wan, Dalong Liu, and Emad S Ebbini, “Imaging vascular
mechanics using ultrasound: Phantom and in vivo results,” in 2010
IEEE International Symposium on Biomedical Imaging: From Nano
to Macro. IEEE, 2010, pp. 980–983.


