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Abstract—Conventional motion estimation techniques in ultra-
sound images such as exhaustive search-based block matching
(ES-BM) have been studied exhaustively and are known to be
computationally expensive and slow. Consequently, they are not
feasible for real-time processing. On the other hand, several
deep learning-based techniques are being developed for real-
time motion estimation of day-to-day objects. In this paper, we
attempt to bridge the gap between tracking techniques being used
for ultrasound images and recent deep learning-based techniques
used for non-medical real-world objects. We propose to adopt the
deep neural network-based Fully-Convolutional Siamese tracker
(SiamFC) to track regions of interest (ROI) in ultrasound images.
We prove that siamese architecture-based tracker is feasible for
motion tracking in ultrasound images and performs better than
conventional ES-BM technique. We applied SiamFC and ES-
BM on 10 different image sequences to track the motion of the
transverse section of the carotid artery. Our experiments showed
that SiamFC was almost six times faster with slightly better
performance compared to ES-BM in most of the cases.

Index Terms—Speckle Tracking, Siamese Tracker, Convolu-
tional Neural Network, Block Matching

I. INTRODUCTION

Motion tracking has a large number of applications in
diagnostic ultrasound. It is used in techniques such as elasticity
imaging [1], elastography [2], and echocaridography [3]. In
ultrasound images, speckle tracking is one of the well-known
methods of motion tracking to assess the elastic properties
and stiffness of soft tissue such as carotid artery. Several
techniques including block matching [4], 2D - tracking using
parabolic polynomial expansion with Riesz transform [5] and
deep neural networks [6] have been proposed for speckle
tracking. Among the many available techniques, ES-BM is
one of the most commonly used speckle tracking techniques.
Owing to its importance, a number of applications have
been developed to improve the accuracy of motion estimation
such as carotid artery wall motion tracking [7], subsample
displacement estimation using kriging interpolation [8] and
shear strain within the arterial wall [9].

Block matching techniques involve defining an ROI (or a
reference block) in the first frame and tracking it through
the entire image sequence. Two factors that play a vital role
for motion tracking are search strategy and cost function for
similarity matching. Typical block matching techniques use
exhaustive search strategy to locate the reference block in the
subsequent frames. Mean absolute difference (MAD), mean

squared error (MSE) or normalized cross-correlation (NCC)
are the commonly used cost functions to find the best candidate
block (any block subject to search against reference block).
Exhaustive search strategy, however, is bottleneck to achieve
real-time processing speeds. In exhaustive search strategy,
cost function is calculated for every possible candidate block,
which makes the process computationally very expensive. In
order to overcome the limitation of exhaustive search in the
context of block matching, faster search algorithm has also
been proposed [10].

Convolutional neural networks are slowly being adopted
for motion tracking in medical imaging. Recently, Peng et al.
[6] applied Flownet2.0 to ultrasound elastography. Typically,
CNNs make use of feature maps to characterize the image.
For tracking, CNNs can be used to obtain feature maps of
both the object under consideration and the candidate blocks.
Such netwroks are referred to as twin networks or Siamese
networks. In this paper, we propose to adopt one such Siamese
network-based architecture to track the motion of carotid
artery. We adopt the Fully-Convolutional Siamese Networks
(SiamFC) developed by Bertinetto et al [11]. Siamese neural
networks are most popular among tasks that involve similarity
matching. SiamFC uses a Siamese network to locate the
reference block within a larger search region. SiamFC uses
similarity learning approach to create a correlation map of
the reference block and all possible candidate blocks within
a predefined search region in a single evaluation. This helps
improve the performance of the tracker. In addition, SiamFC
assumes small and gradual changes of the ROI under consider-
ation. Since motion of carotid artery is also gradual (also due
to high frame rate), SiamFC can be used to track the motion
of the carotid artery. Towards this end, our objective in this
paper is to adopt SiamFC to prove that it has higher tracking
accuracy and less computational time than the conventional
ES-BM tracking technique.

II. MATERIALS AND METHODS
A. Siamese Tracker

Siamese networks use same transformation function on
two different inputs to compare the similarity between them.
Siamese architectures formulate motion estimation as convo-
lutional feature cross-correlation between a reference block
and a search region. Fig. 1 represents the architecture of
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Fig. 1. Architecture of Fully-Convolutional Siamese Network — SiamFC

SiamFC. In the original paper, the authors address the problem
of tracking an arbitrary object in a given video sequence. In
other words, they aim to build a class-agnostic tracker. The
authors propose to learn a function f(z,z), that compares the
reference block z to a candidate block x. If z and = depict
the same object, the function outputs a high score and a low
score otherwise. The network is trained in an initial offline
phase and is then just evaluated during tracking. In SiamFC,
the convolutional stage of the architecture resembles that of
AlexNet [12], which is used as the embedding function () for
both the inputs. Fully-convolutional (does not contain dense
layers) property of the architecture allows us to input images
of different sizes as shown in Fig. 1. SiamFC attempts to find
the reference block within a larger search region considering
all translated sub-windows. Hence, the output of the network
is a score map. The position of the maximum score relative
to the center of the score map helps to find the target from
frame to frame. Similarity learning approach is achieved by
applying identical transformation ¢ to both the inputs and
then combine their representations using a different function
f(Z, :E) = g(ﬁ,@(z), gp(l‘))

The convolutional stage of SiamFC, is trained with non-
medical image classes from ILSVRC dataset [13]. Since the
architecture assumes small and gradual changes to the object
scale, we propose to adopt this architecture directly to track
the motion of the carotid artery and prove that it performs
better than ES-BM. In our experiments, the ground truth ROI
available from the first frame was considered as z and a
predefined search region in subsequents frame around the ROI
of the current frame was considered as the search region. The
network then compares the reference block to candidate blocks
z of the same size to create a correlation score map. The
candidate block with highest score is considered as tracked
output and as reference block for the next frame.

B. Dataset and Experiments

In this paper, B-mode image sequences of the perpendic-
ular cuts of the carotid artery (cross-section view) obtained
from [14]-[16] were used to validate the efficacy of SiamFC

against ES-BM technique. 10 different image sequences from
this dataset (henceforth called the CA dataset) were used to
compare the two tracking techniques. Each image sequence
consisted of 20 — 25 frames. Ground truth of the arterial
movement was known a priori. Fig. 2 represents one of the
frames of the CA dataset along with the ROIL. The red circle
in the image represents the location of the blood vessel.
Such ROIs were tracked in all 10 image sequences using
both SiamFC and ES-BM. Ground truth ROI available from
the first frame was given as input to both the trackers and
were tracked through the rest of the sequence. For ES-BM
tracker, as the name suggests, best matching candidate block
was located using exhaustive search and normalized cross-
correlation (NCC) was used as the similarity matching cost
function.

Three different metrics were used to compare the two
trackers. First, the Root Mean Squared Error (RMSE) of the
centroid locations of the tracked ROIs obtained using SiamFC
and ES-BM were compared with the centroid locations ob-
tained from the ground truth. Second, Computational Time per
Frame (CTF), defined as the total time taken by the tracker
to process an entire frame, was compared between the two
trackers. Lastly, intersection over Union (IoU) or bounding box
overlapping intersection (an evaluation metric used to measure
the accuracy of detection of a particular technique with respect
to the known ground truth) of the two trackers were calculated
with respect to the ground truth.

III. RESULTS

As mentioned in the previous section, the CA dataset con-
sisted of 10 different image sequences. For tracking, ground
truth ROI from the first frame was given as input to both
SiamFC and ES-BM. Fig. 3 represents the detections of
SiamFC and ES-BM against the ground truth for a sample
frame from the CA dataset. The two trackers were compared
against each other based on the three aforementioned metrics.

A. RMSE of Centroids

Fig. 4a and 4b represent the centroid locations obtained
from ground truth, ES-BM and SiamFC in both axial and
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Fig. 2. Sample frame from the carotid artery (CA) dataset. The red circle
represents the blood vessel and the yellow box represents the ROI.

TABLE I
RMSE VALUES IN PIXELS FOR SIAMFC AND ES-BM WITH RESPECT TO
THE GROUND TRUTH AVERAGED OVER ALL IMAGE SEQUENCES OF CA

DATASET.
RMSE | SiamFC | ES-BM
Axial 3.55 4.11
Lateral 3.22 4.23

lateral directions. Fig. 5a and 5b represent the performance
of SiamFC against ES-BM for individual image sequences.
Table I summarizes the RMSE values of SiamFC and ES-BM
with respect to the ground truth averaged over all 10 image
sequences. It can be seen that RMSE for SiamFC is reasonably
lower than ES-BM in both axial and lateral directions.

B. Computational Time per Frame (CTF)

CTF was computed for both SiamFC and ES-BM for all 10
image sequences. Fig. 6 represents the error bar plot for the
CTFs for both the trackers. Averaged over all frames for each
sequence, CTF for SiamFC was found to be 0.29s and 1.69s
for ES-BM. In terms of CTF, SiamFC was roughly 6 times
faster than ES-BM.

C. Intersection Over Union (IoU)

Fig. 7 represents the IoU calculated for both SiamFC and
ES-BM with respect to the ground truth over all 10 image
sequences. The IoU averaged over all image sequences was
found to be 82.38% for ES-BM and 83.08% for SiamFC.

IV. DISCUSSION

In this paper, we proved that applying SiamFC in place of
conventional ES-BM for motion tracking in ultrasound images
was feasible. Results from our initial experiments were found
to be promising. It was evident that SiamFC performed better
than ES-BM both in terms of accuracy and processing time.
To the best of our knowledge, this is for the first time that a
Siamese architecture has been adopted to estimate motion in
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Fig. 3. Ground truth and detections: yellow represents the ground truth ROI,
red represents the detection from ES-BM and green represents the detection
from SiamFC.
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Fig. 4. Centroid locations of ground truth, ES-BM and siamFC through all
the frames of a sample image sequence from the CA dataset.

ultrasound image sequences. We also found that SiamFC had
much higher processing speed compared to ES-BM.

Since SiamFC is a class-agnostic tracker, any ROI can
be tracked without having to explicitly re-train the network.
This comes as the greatest advantage of using a Siamese
architecture-based tracker. The deep convolutional neural net-
work used in SiamFC is trained on the ILSVRC dataset [13].
We would like to highlight that this dataset consists of non-
medical classes such as cats, dogs, cars, fish, etc. Yet, the
performance of SiamFC was better than ES-BM in terms of
every metric that we have used in this paper.

It should be noted that SiamFC is a detection-based tracker.
That is to say that the reference ROI provided in the first
frame is tracked through subsequent frames based solely on
detections obtained using similarity matching. The tracker
does not consider any motion model. This allows us to adopt
the required motion model based on the target tissue or organ
making the tracker more versatile.

V. CONCLUSION

A siamese architecture-based tracker was used to estimate
the motion of the carotid artery. It was compared to the
conventional exhaustive search-based block matching tracking.
Our results proved that Siamese architecture-based tracker is
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Fig. 5. Represents RMSE in (a) axial direction and (b) in lateral direction,
for all image sequences.
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Fig. 6. Error bar plot of Computational Time per Frame (CTF) for SiamFC

and ES.

feasible for motion estimation in ultrasound images. We also
proved that it is better than conventional methods both in terms
of accuracy and processing time. Our future work will focus on
an improved version of the Siamese tracker with an additional
motion model for carotid artery to further enhance tracking
accuracy.
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